Число сочетаний без повторений

Краткое описание

Изучение математических правил не может обойти стороной число сочетаний из n по k. Формулы комбинаторики как науки активно используются во всех жизненных отраслях. Этот раздел включён в школьную программу старших классов и вступительные испытания многих вузов России. Удивительная комбинаторика лежит в основе прикладного искусства.

Число сочетаний

Это направление науки начало активно развиваться ещё шесть веков назад. Достоверно известно, что первые комбинаторные задачи присутствовали в трудах философов и талантливых математиков Средневековья. В те времена представители стремительно развивающегося научного мира всячески пытались найти актуальные методы решения поставленных задач, хотели определить основные правила и понятия, а также утвердить уникальные в своём роде формулы и математические уравнения для тех, кто ещё не знаком с этим научным направлением.

Актуальные формулы и нормы комбинаторики применяются в распространённой теории вероятностей, где специалисты могут быстро и качественно подсчитать процент случайных событий, чтобы в итоге получить закон реального распределения случайных величин. При правильном подходе можно углублённо изучать закономерности тех или иных событий, что очень важно для понимания статистических природных правил, которые неизбежно проявляются в окружающей природе и эксплуатируемой технике.

Ключевые нюансы

Используемое в математике число сочетаний с повторениями можно подробно изучить по книгам и специальным изданиям. Комбинаторика подробно описана в том разделе науки, который занимается многофункциональными операциями с множеством задействованных элементов.

Экспертами было доказано, что это направление затрагивает довольно большой математический пласт, в котором ученикам предлагается изучить, сколько в мире существует различных комбинаций, подчиняющихся определённым условиям. Основной задачей этой науки можно считать требование размещения различных объектов по специальным правилам и последующее нахождение точного количества способов таких расположений.

Число сочетаний из n по k

На просторах интернета можно встретить много различных учебников и другого познавательного материала по информатике/математике для школьников, а также специальные сборники уравнений и сложных примеров для студентов, где в доступном и максимально подробном виде объяснена довольно увлекательная и познавательная комбинаторика. В начальных классах задачи на эту тему решают на специальных кружках, а вот в гимназиях с углублённым изучением точных наук ей посвящают основные уроки. Многоуровневые задачи по комбинаторике включены в программу олимпиады.

Существует ряд базовых понятий, которые нужно усвоить учащимся:

Формула число сочетаний с повторениями

  1. Если в конкретном примере f = n, то эти размещения называются исключительно перестановками.
  2. Размещение. В этом случае речь касается совершенно любого упорядоченного подмножества f из задействованных элементов множества n.
  3. Сочетания. В качестве основы может быть задействовано любое подмножество из элементов f, которые принадлежат изучаемому множеству, состоящему из n — различных элементов.

Необходимо отметить тот факт, что за основу может быть взят объект или целое явление, которое попадает в искомое множество. Перестановка затрагивает элементы, которые находятся в большом количестве и определённом порядке. Сочетание — своеобразные подмножества, пребывающие в произвольной форме. Размещение представляет собой упорядоченные подмножества в исходном множестве. Правильно посчитать нужный коэффициент можно при помощи многофункциональных онлайн-калькуляторов, которые обладают всеми необходимыми функциями.

Выборки и подсчёт суммы

Если предположить, что А = {a1… an} — множество из n элементов, то их совокупность будет называться выборкой объёма k из n. В этом случае действует ряд важных правил. Выборка может считаться правильно упорядоченной только в том случае, если итоговая последовательность следования всех задействованных элементов в ней была задана учеником заранее. Исключений не предусмотрено.

Различными выборками называются только те математические примеры, которые отличаются исключительно порядком следования элементов. Если отличия незначительные, тогда ученику предстоит работать с неупорядоченной комбинацией. В отдельных примерах могут допускаться или не должны допускаться повторения задействованных элементов.

Свойства сочетаний

Чаще всего перед учащимися возникает необходимость подсчёта точного числа вероятных выборок с определёнными математическими параметрами. Довольно часто для контроля над вероятными комбинаторными объектами используется два ключевых приёма — правила произведения и суммы. На каждый случай специалисты предусмотрели ряд важных правил, которые призваны обезопасить учащегося от различных ошибок.

Базовое требование математического произведения основано на том, что когда исследуемый объект А может быть выбран различными f способами, то итоговый выбор А и B в указанном ранее порядке может быть осуществлён f * n методами. Правило суммы отличается тем, что если ученик имеет несколько возможностей выбрать точку А, тогда поиск А или В можно будет осуществить по специальной системе f + n.

Действующее правило произведения

Именно это направление в комбинаторике является одним из базовых для решения поставленных задач. При тщательном выборе элемента А из n способов (В из m) правильным считается то утверждение, в соответствии с которым одновременно подобрать пару А и В можно n * m методами, что очень важно. На этот случай действует три основных утверждения:

Формула сочетаний из n по k

  1. Если ученику на каждом новом шаге известно количество доступных вариантов выбора, то для правильного определения суммарного количества способов необходимо все имеющиеся данные перемножить между собой.
  2. Когда есть возможность выбрать первый искомый элемент в задействованной комбинации любым a способом, а для второго примера можно применить вариант d, то общее число действий будет соответствовать формуле a * b. Это утверждение является наиболее распространённым.
  3. Если k способами можно безошибочно выбрать элемент x, а для Y подойдут имеющиеся m методы, тогда для пары x и y выполняется расчёт по формуле k * m. Данные можно записать в виде таблицы.

В эффективности описанных правил можно убедиться, благодаря некоторым примерам. По условиям задачи дано два ромба, три мяча, четыре гантели и пять кубов. Ученику нужно определить, сколькими способами можно будет вытянуть ромб, мяч, гантель и куб. Решение элементарное: 2*3*4*5= 120. Стоит отметить, что в этой задаче может быть задействован факториал, с помощью которого всегда можно вычислить более сложные варианты и решить трудные задачи.

По условиям следующего примера дано два мяча и пять скакалок. Задача состоит в том, чтобы определить, какова вероятность достать 1 скакалку и 1 мяч. Решение: 2*5=10.

Решение примеров комбинированного типа

Если ученик разобрался с основными свойствами сочетаний, то он также должен изучить уравнения всех доступных разновидностей задач с наиболее подходящими методами поиска правильных ответов. Эксперты рекомендуют потренироваться на более запутанных ситуациях, которые встречаются в повседневной жизни каждого человека. Основные категории задач:

Сочетания и размещения

  1. Специфический магический квадрат. По условиям необходимо отыскать фигуру, в которой итоговая сумма всех задействованных чисел в столбцах и рядах будет одинакова (основной тип — латинский квадрат). Для решения таких уравнений понадобятся рекуррентные соотношения. А вот для поиска правильного ответа придётся задействовать гораздо меньше элементов, которые применяются в востребованных формулах и правилах.
  2. Математические задачи про торговцев. Суть состоит в том, чтобы отыскать все реальные способы прохождения людей из стартового пункта A в точку B. В этом случае действует метод траектории. Для этой разновидности задач свойственно элементарное геометрическое проектирование возможных способов решения.
  3. Математические примеры с размещением. Классическая производственная задача (к примеру, используется в лоскутной методике) — отыскать все доступные способы разложения некоторого количества задействованных элементов в специальные ячейки, но только в чётком порядке. В этом случае действуют включения и исключения. Этот вариант применяется специалистами при доказательстве различных выражений.

Экспертами неоднократно было подтверждено, что комбинаторика является интересной и познавательной наукой, так как в наш век быстрой модернизации инновационных технологий постоянно будут нужны профессиональные специалисты, которые способны в полном объёме предоставить разнообразные решения для тех или иных практических задач.

Доступные размещения с повторениями и без них

Работа с различными математическими комбинациями подразумевает использование определённых правил, в противном случае избежать распространённых ошибок будет крайне сложно. Если имеющаяся l различных элементов может повториться m раз, оказавшись на имеющихся m местах, тогда при составлении вывода количество размещений с последующими повторениями вычисляется по определённой комбинаторной формуле — Am / l = lm. Именно под этим определением принято понимать чёткий набор компонентов m из множества l: A m/l = l * (l-1) * (l -2) *… * (l—m +1) = l!/(l—m)!.

Изучаемое число сочетаний без повторений сопряжено с некоторыми дополнительными нюансами. В этом случае в распоряжении учащегося имеется n разных математических элементов. Многих в такой ситуации интересует, сколько именно можно будет составить актуальных k расстановок.

Количество сочетаний

Два базовых подхода считаются различными только при условии, если они отличаются друг от друга минимум одним элементом или состоят из аналогичных элементов, которые расположены в разном порядке. Каждый нюанс должен быть учтён, так как от этого зависит итоговый результат.

Изучаемые в этом случае расстановки указывают на право размещения без повторений, а вот их число обозначают как Ak / n (читается следующим образом: а из n по k). Первая буква является неотъемлемым элементом довольно известного французского слова Arrangement, которое означает «приведение в порядок». В такой ситуации популярность получила следующая формула: Ak / l = l (l -1) * (l -2)… (l — k +1). Специальные комбинации позволяют определить даже автомобильный региональный код.

Описанные правила и формулы позволяют решать довольно сложные и многоуровневые задачи. К примеру, из трёх предъявленных цифр нужно выбрать только две, чтобы в итоге получились разные двузначные числа. По условиям описанной задачи нужно определить, сколько вариантов существует в этом случае. Ответ: (4а) А2/3=3*2 = 6. Но также уместно следующее решение: А2/3 = 3!/(3−2)! = 3!/1! = 1*2*3/1 = 6. В этом случае каждый существующий элемент может быть расположен по несколько раз, что соответствует условиям задачи. Для этой ситуации уместна следующая формула: (5) Ak / l = lk.