Свойства умножения 5 класс

Общие сведения

В математике любое действие принято называть операцией. Согласно математическому определению под ней понимают представления соответствия одному или нескольких элементам аргумента иного элемента. Все операции разделяют на арифметические и гипероперации. К первым относят сложение и вычитание. Вторые же включают в себя:

  • произведение (умножение) — действие высшего порядка сложения;
  • деление — обратная произведению операция;
  • возведение в степень — высший порядок умножения;
  • корень — функция отличную от степени;
  • взятие логарифма — обратная операции возведения.

Сочетательное свойство умножения

При умножении участвуют два члена (аргумента). Один из них называют множителем, а другой сомножителем. Но вместе с тем в учебниках используют и другие названия — множимое и множитель. Результатом умножения является не что иное, как произведение. Так как перемножение по своей сути является коммутативной операцией, то есть характеризуется свойством переместительности, порядок записи членов не оказывает влияния на результат.

Наряду с таблицей существуют и законы умножения. В 5 классе среднеобразовательной школы учащиеся проходят эти свойства, закладывая фундамент для освоения быстрого счёта. По своей сути произведение является результатом сложения одного из чисел столько раз, сколько указывает второе. Например, пусть имеется девять рядов. В каждом из них лежит пятнадцать яблок. Чтобы вычислить, сколько же всего фруктов необходимо, нужно сложить число пятнадцать само с собой девять раз. В ответе и получится искомое количество.

Эта неудобная операция сложения заменяется умножением. Другими словами, нужно просто число рядов умножить на количество яблок в каждом из них: k = 15 * 9 = 135 штук. При этом, согласно свойству умножения, порядок перемножения не имеет значения, так k = 9 * 15 = 135 штук.

Сочетательный закон умножения

Под умножением двух натуральных чисел понимают действие, результат которого равен сумме одинаковых слагаемых, определяемой первым из умножаемых чисел. При этом второе из этих чисел указывает количество слагаемых. В этом и заключена суть умножения двух натуральных чисел. Можно сформулировать простое определение действию: под произведением понимают результат, полученный суммированием слагаемого, при этом одно из перемножаемых чисел указывает на количество слагаемых.

Свойства произведения

Изучение математиками процесса умножения позволило им обнаружить ряд закономерностей, характерных для этого действия. Их назвали свойствами умножения. Наиболее часто при решении задач, при котором используется нахождение произведения, используют шесть законов умножения:

Законы умножения

  1. Сочетательный. Объясняющий правила перемножения, если в выражении присутствуют скобки.
  2. Переместительный. Разрешает перестановку множителей.
  3. Распределительный сложения. Связывает сложение с умножением. Его формулировка звучит так: сложение произведения первого слагаемого и произведения числа другого слагаемого с данным числом можно заменить произведением первого слагаемого на это число. То есть (a + b) * c = a * c + b * c.
  4. Распределительный вычитания. Аналогичный распределительному сложения, только вместо суммирования выполняется вычитание. То есть (a — b) * c = a * c — b * c.
  5. Перемножение единицы и натурального числа. Согласно его формулировке произведение произвольного числа слагаемых, каждое из которых равно единице на натуральное число, будет равняться сумме числа этого слагаемого.
  6. Умножение на ноль. При умножении любого члена на ноль результатом будет ноль.

Сочетательный и переместительный законы были получены путём изучения результатов действия сложения. Они довольно похожи между собой. При сложении используется два правила: от перемены мест слагаемых результат остаётся неизменным, и при сложении нескольких членов можно сложить только два из них, а после полученную сумму прибавить к оставшимся. Именно на этих свойствах и построены два закона умножения. Сочетательное свойство сложения и умножения вместе с переместительным законом используют для существенного ускорения расчётов.

Например, пусть необходимо вычислить выражение: 15 * 3 * 4 * 5 + 1 * 2 * 3 * 4 * 5 * 6. Пример состоит из двух слагаемых. Первое, используя сочетательный закон, можно упростить. То есть не выполнять перемножение последовательно, что трудно сделать в уме, а вначале умножить первый и второй член, а затем третий с четвёртым, а уже после полученные произведения перемножить между собой: (15 * 3) * (4 * 5) = 45 * 20 = 900. Второе же слагаемое проще вычислить последовательно. В итоге получится: 900 + 720 = 1620.

Формулировка и объяснение

Сочетательный закон, а его часто называют ассоциативным, гласит, что при умножении любого количества множителей результат не поменяется, если группу этих множителей подменить произведением. Математической формулой это утверждение можно записать в виде: a * b * c = (a * b) * c = a * (b * c).

Для понимания этого действия нужно представить прямоугольник со сторонами три и пять сантиметров, нарисованный на тетрадном листе в клетку. Фигуру можно разбить на одинаковые единичные (сантиметровые) квадраты, а после подсчитать их количество. Сделать это можно несколькими способами.

Например, зная, что общее количество квадратов будет равняться произведению пяти на три, а каждый квадрат образуется четырьмя клетками, общее число будет равняться n = (5 * 3) *4 = 60 штук. Другой способ можно построить на том, что в каждом столбце находится три квадрата. Отсюда следует, что столбец содержит 3 * 4 клетки. Общее число клеток будет равняться: 5 * (3 * 4) = 60 штук.

Законы умножения 5 класс

Получается, что два способа равноправны, то есть (5 * 3) * 4 = 5 * (3 * 4). Таким образом, если заменить члены буквенным обозначением, то получится сочетательное свойство умножения. Отсюда следует ещё одно правило. Оно позволяет не только менять местами множители, но и вносить их под знак скобки, тем самым определяя порядок решения.

Распределительное свойство удобно применять и относительно сложения и вычитания. Пусть имеется отрезок разделяющий прямоугольник. Количество единичных квадратов, с одной стороны, будет равняться произведению трёх умноженному на три, а с другой — трёх на два. В итоге получится: 3 * 3 + 3 * 2 = 15 штук. Иначе можно утверждать, что в каждой строчке фигуры размещены 3 + 2 квадрата. Исходя из этого, верно будет записать: 3 * (3 + 2) = 15 штук. Равенство 3 * 3 + 3 * 2 = 3 * (3+ 2) и есть распределительное свойство, довольно плотно использующееся с сочетательным законом.

Например, нужно найти результат действия 25 *1349 * 4. Используя переместительное и сочетательное свойство, удобно выполнить перестановку членов, благодаря чему можно найти ответ. Так, удобно объединить члены выражения следующим образом: 25 * 1349 * 4 = 1349* (25 * 4) = 1349 * 100 = 134900. Аналогичным образом можно поступить и при присутствии в задании знака сложения или вычитания. Например, 311 * 734 + 329 * 266 = 311 * (734 + 266) = 311 * 1000 = 311 000.

Решение примеров

Необходимо не только понять сочетательный закон, но и уметь применять его в практических заданиях. Тем более что решение примеров позволит закрепить теоретический материал и довести действия до автоматизма. Получив опыт группирования членов, можно будет, затрачивая минимальные усилия, перемножить любой сложности выражения. При этом некоторые действия даже выполнить в уме.

Существует несколько условий применения сочетательного свойства: в задании не может быть менее трёх числовых значений; выражение должно содержать только все знаки сложения или умножения. Например, для следующих выражений: 6 * 55 — 3, 6 * 34, 4 * 9 *12, 34:5 * 8, 4 *9 *234, закон применим только ко второму и последнему.

Вот ряд примеров, предназначенных для самостоятельного решения:

Сочетательное свойство сложения и умножения

  1. Нужно вычислить: 5 * 7132 * 2 = (5 * 2) * 7132 = 10 * 732 = 7320. Выполнив действие сначала над числами пять и два, пример можно легко решить и устно. В то же время, решая задание последовательным методом, довольно легко ошибиться.
  2. Определить произведение выражения: 8 * 123 * 532 * 25 * 4 * 125. В уме такой пример решить прямолинейно сложно. Но если внимательно посмотреть, то можно выделить два члена 125 и 8. При умножении они дадут тысячу, это легко проверить подсчётом в столбик. Таким образом, пример изменится до вида: 1000 * 125 * 20 * 25 * 4. Легко умножить и двадцать пять на четыре. Результатом будет сто. В итоге выражение примет вид: 125000 * 2000 = 250000000. То есть ответ возможно найти и устно.

Следует отметить, что для освоения сочетательного свойства обычно хватает самостоятельно решить около двадцати различных примеров. При этом для проверки результата можно использовать обычный калькулятор или даже онлайн-калькуляторы.