Теорема, свойства и уравнение касательной к окружности

Общие сведения

Важно знать терминологию, соотношения и теоремы для решения задач этого класса. Касательной к окружности называется прямая, которая имеет с ней только одну точку соприкосновения. Прямая — это линия, не имеющая границ, т. е. она ничем не ограничена. Окружностью называется геометрическое место точек, удаленных от центра на одинаковые расстояния.

Следует отметить, что касательные бывают внешними и внутренними. Внешней называет прямая линия, проходящая с внешней стороны окружности. Внутренние касательные пересекают отрезок, который соединяет центры двух окружностей. Последний тип прямых не существует, когда два круга пересекаются. Касательные нужно уметь правильно строить, поскольку от этого зависит правильность решения задачи.

Построение касательных

Для построения касательной к окружности следует на последней отметить произвольную точку. Затем необходимо через нее провести прямую. Нужно отметить, что у круга может быть несколько таких прямых. Когда даны две окружности, тогда можно проводить не только внешние, но и внутренние. Существует определенный алгоритм, по которому можно построить первый тип:

Общие сведения о касательной к окружности

  1. Начертить 2 окружности с центрами в точках О1 и О2. При этом должно соблюдаться условие r1 > r2, где r1 и r2 — радиусы I и II соответственно.
  2. Нарисовать III окружность с центром в О1 и радиусом r3 = r1 — r2.
  3. Провести 2 касательные из точки О2 к III. Они параллельны искомым, поскольку радиусы I и II уменьшаются на r2.

Существует более простая модель построения таких прямых. Для этого следует начертить один круг, а затем отметить две произвольные точки на его противоположных сторонах. Далее начертить II круг, превышающий I по радиусу. Отметить на нем точки, воспользовавшись подобием, т. е. они должны быть в тех же местах, что и на I. Затем провести прямые, которые должны соприкасаться с I и II кругами только в одной точке.

Для построения внутренних касательных существует определенная методика. В интернете можно найти много информации. В одних источниках алгоритм построения является сложным, а в других — простым. Однако есть один метод, позволяющий осуществить данную операцию. Специалисты описали его на «понятном» языке для новичков. Суть методики заключается в следующем:

Построение касательных к окружности

  1. Необходимо построить два круга, которые не пересекаются, с радиусами r1 и r2. Расстояния между ними должно составлять r1 + r2.
  2. Соединить их центры (середины) отрезком.
  3. Отметить на нем среднюю точку, которая делит его на две равные части.
  4. Через точку, полученную на третьем шаге методики, провести прямую. Она должна иметь только одну точку соприкосновения с I и II окружностями.
  5. Аналогично провести еще одну прямую.
  6. Искомые прямые являются внутренними касательными.

Далее нужно рассмотреть некоторые свойства, на основании которых можно решать задачи и доказывать геометрические тождества.

Основные свойства

Свойства — утверждения, полученные в результате доказательства теорем о касательной к окружности. Первые нет необходимости доказывать, поскольку об этом уже позаботились математики. Они выделяют всего 4 свойства касательных к окружности:

Основные свойства касательной к окружности

  1. Если провести из одной точки две касательные к некоторой окружности, то отрезки, лежащие на них, будут равны. Искомый угол будет делиться радиусом пополам.
  2. Любая касательная и радиус, проведенный к ее точке, образуют прямой угол. Справедливо и обратное утверждение: радиус, который проведен в точку касания, перпендикулярен данной прямой.
  3. Вся секущая, умноженная на свою внешнюю часть, равна квадрату расстояния касательной, которая проведена из общей с ней точки.
  4. Образованный угол между касательной и секущей, эквивалентен градусной мере угла, который опирается на образованную хорду.

Для рассмотрения I свойства необходимо начертить окружность с центром О1. Затем нужно отметить точку М вне окружности. Из М провести одну прямую, которая соприкасается с кругом в точке А. Такую же операцию следует проделать и для другой касательной. Точку соприкосновения назвать В. Отрезки АМ и ВМ равны между собой.

Если провести радиусы к точкам А и В, то можно сделать вывод, что углы являются прямыми. Чтобы понять третье свойство, необходимо начертить окружность и отметить некоторую точку М за ее пределами. После этого следует из искомой точки провести секущую и касательную. Первой называется прямая, проходящая через окружность и пересекающая ее в двух точках. Для касательной точку соприкосновения необходимо обозначить А. Тогда секущая пересекает круг в точках В (ближняя) и С (дальняя). В результате этого получается такое соотношение: АМ 2 = АВ * МС.

Когда для произвольной окружности существуют касательная и секущая, тогда между ними образуется некоторый угол.

Хорда, полученная в результате прохождения через окружность, образует также угол. Он опирается на искомую хорду и является вписанным. Следовательно, по свойству градусные меры углов равны между собой. Далее нужно разобрать частные случаи, на основании которых можно сделать вывод о количестве касательных.

Свойства и уравнение касательной к окружности

Когда окружность вписана в ромб, тогда их точки касания нужно рассматривать по первому свойству. Радиус окружности можно найти по следующим формулам:

  1. Через диагонали (d1, d2) и сторону (a): r = (d1 * d2) / 4а.
  2. Только по диагоналям: r = (d1 * d2) / [(d1)^2 + (d2)^2]^(½).

Следует отметить, что у ромба две диагонали. Они различаются по размеру. Одна из них больше другой (d1 > d2).

Частные случаи

В некоторых задачах нужно определить количество касательных у двух окружностей. Можно выполнить ряд сложных и трудоемких доказательств. В результате этого будет потрачено много времени, а можно воспользоваться уже готовыми дополнительными свойствами:

Уравнение касательной к окружности

  1. Четыре касательных: круги не соприкасаются, т. е. d > r1 + r2 (значение диаметра больше суммы радиусов r1 и r2).
  2. Две общие внешние и одна внутренняя: окружности соприкасаются только в одной точке (d = r1 + r2).
  3. Только две внешние: пересечение окружностей в двух точках (|r1 — r2| < d < r1 + r2).
  4. Одна общая внешняя: окружности касаются внутри друг друга (d = |r1 — r2|).
  5. Отсутствуют: один круг находится внутри другого (d < |r1 — r2|).

В последнем случае любая касательная будет являться секущей для другой окружности. Существует еще одно положение, когда окружности совпадают. Тогда любая касательная считается общей. В высшей математике разбирается также «отрицательный» радиус. Тогда вышеперечисленные свойства можно править следующим образом:

  1. Нет касательных: окружности не соприкасаются, и для них выполняется условие d < - (r1 + r2).
  2. Две внутренние (общие) и одна внешняя: круги соприкасаются в одной точке (d = -r1 — r2).
  3. Одна пара внутренних: пересечение в 2 точках (|r1 — r2| > d > - r1 — r2).
  4. Внутренняя общая (одна): соприкасаются внутри (d = |r2 — r1|).
  5. Четыре: при d > |r1 — r2|.

Когда заданы окружности, радиус одной из которых равен 0, тогда «нулевой» круг эквивалентен двойной точке. Прямая является двойной и проходит через эту точку. В этом случае математики определяют всего две внешних. Если r1 = r2 = 0, то всего 4 внешних общих касательных. Далее для решения задач нужно разобрать доказательства некоторых свойств.

Доказательства утверждений

Очень важно знать доказательства некоторых свойств и теорем, поскольку одним из типов задач считаются упражнения повышенной сложности, требующие логических расчетов в общем виде. Например, нужно доказать, что касательная образует с радиусом, проведенным к точке касания, прямой угол. Существует тип доказательства от противного.

Касательная к окружности

Для этого следует предположить, что искомый угол не равен 90 градусам. Пусть дана некоторая касательная р. Она имеет с кругом общую точку А. Нужно провести к ней перпендикуляр (радиус). Далее нужно провести из центра О отрезок ОВ на р. Образуется прямоугольный треугольник АВО с гипотенузой ОВ. Если опираться на утверждение от противного, то гипотенуза будет меньше катета (d < r). Однако радиус не может быть больше диаметра, поскольку он рассчитывается по следующей формуле: d = 2 * r. Следовательно, утверждение доказано.

Аналогично доказывается и обратное свойство. Его формулировка имеет такой вид: прямая, проходящая под прямым углом через точку, которая образована радиусом, является касательной. В этом случае можно доказывать не от противного. Расстояние от прямой до центра окружности эквивалентно некоторой величине и является радиусом. Из определения следует, что прямая и окружность имеют общую точку, и только одну. Следовательно, она и есть касательная.

Доказательство об отрезках, проведенных из одной точки, тоже нужно разобрать, поскольку такой прием применяется в решении сложных задач. Отрезки равны между собой и образуют с прямой, проведенной к центру круга, эквивалентные углы.

Следует выполнить построение окружности с центром Р. Далее нужно обозначить точку А за ее пределами и провести из нее лучи-касательные к искомой окружности. Они образуют на круге точки А и В. Кроме того, следует доказать равенство углов ОАВ и САО. При построении образовалось два треугольника ОВА и ОСА. Фигуры являются прямоугольными на основании свойства о касательной и радиусе.

Далее необходимо доказать равенство фигур ОВА и ОСА. Это сделать довольно просто: гипотенуза — общая, катеты ОВ и ОС равны (радиусы) и углы АВО = АСО = 90. Следовательно, они равны по первому признаку, а также эквивалентны друг другу стороны АВ и АС. Кроме того, угол ОАВ = САО. Утверждение доказано. Гипотенуза является также и биссектрисой. В некоторых источниках можно встретить доказательство равенства тангенсов углов.

Пример решения задачи

Нужно составить уравнения касательных к окружности (описанной графиком функции х 2 + y 2 = 2x + 6y + 19), проходящих через координаты х =0 у= -14. Для решения задачи следует действовать по такому алгоритму:

Теорема и свойства касательной к окружности

  1. Перенести все слагаемые, кроме 19, в левую сторону: х 2 + y 2 — 2x — 6y = 19.
  2. Выделить полный квадрат для окончательной записи уравнения окружности: х 2 — 2x + 1 — 1 + y 2 — 6y +9 — 9 = (х — 1)^2 + (y — 3)^2 = 29.
  3. Уравнение прямой, проходящей через (0;-14) в общем виде: y — (-14) = k * (x — 0) или у = кх — 14.
  4. Составить систему уравнений: (х — 1)^2 + (y — 3)^2 = 29 и у = кх — 14.
  5. Подставить второе в первое: (х — 1)^2 + (кх — 14 — 3)^2 = 29.
  6. Упростить выражение: (х — 1)^2 + (кх — 14 — 3)^2 — 29 = х 2 — 2x + 1 +k 2 * x 2 — 34kx + 289 — 29 = (1 + k 2 ) * x 2 — 2 * (17k + 1) + 261.
  7. Решением уравнения должен быть один корень: D/4 = 0.
  8. Упростить тождество: D/4 = (-(17k + 1))^2 — 261 (1 + k 2 ) = 289k 2 + 34k + 1 — 261 — 261k 2 = 28k 2 + 34k — 260 = 0.
  9. Найти значение D: 17 2 — 28 * (-260) = 289 + 7280 = 7569.
  10. Первый коэффициент к1 = (-17 — 87) / 28 = -26/7.
  11. Коэффициент к2 = (-17 + 87) / 28 = 5/2.
  12. Записать уравнения прямых с учетом к1 и к2: у1 = (-26/7) * х — 14 (26х + 7у + 98 = 0) и у2 = (5/2) * х — 14 (5х — 2у — 28 = 0).

Следует отметить, что уравнение окружности с радиусом, равным единице, описывается функцией x2 + y 2 = 1. Эта запись применяется для решения задач в общем виде. Прямая — функция, описанная прямой пропорциональностью у = кх + b. Чтобы связать окружность и касательные, нужно составить систему уравнений. Этот математический ход объясняется тем, что у функций должны быть общие решения (точка на окружности). После решения можно выполнить проверочные вычисления, подставив корни в систему.

Таким образом, для решения задач об окружности и касательной следует знать общие понятия, а также основные свойства и теоремы.