Из огромного перечня математических заданий часто встречаются задачи, связанные с темой «Конус». На уроках геометрии школьники должны усвоить основные понятия и названия всех элементов этой фигуры и понять, как и по каким формулам производится расчет нужных параметров. 

О данной геометрической фигуре пойдёт речь в сегодняшней статье.

Определение и элементы конуса

Что такое конус

Под конусом понимают тело, состоящее из круга и точки, которая удалена от его поверхности на определённое расстояние. 

При этом точка соединяется с основанием посредством проведения лучей, которые называются образующими. Линия, соединяющая центр круга с удалённой точкой, является высотой данной фигуры.

Конус

Обратите внимание! Также существует такое понятие, как ось конуса. Это линия, проходящая через его центр и совпадающая с высотой. Образующие строятся относительно оси.

Хотелось бы рассмотреть ещё несколько понятий по этой теме:

1. Под конусностью понимают отношение диаметра основания фигуры и её высоты:

601

Важно! Конусность отвечает за угол наклона образующих. Чем больше данный параметр, тем острее угол.

2. Осевое сечение предполагает наличие плоскости, которая будет рассекать фигуру, проходя через ось:

602

3. Касательная— это плоскость, которая соприкасается с образующей конуса. При этом важно, чтобы она была перпендикулярна осевому сечению.

603

Свойства кругового конуса

Свойства кругового конуса

Выделяют несколько особенностей, которыми обладает фигура данного типа:

  1. Образующие кругового конуса равны друг другу.

  2. Чтобы найти центр тяжести фигуры, нужно её высоту поделить на четыре части.

  3. Место пересечения плоскости сечения и основы образует параболу. Если через вершину тела провести плоскость сечения, то получится равнобедренный треугольник.

Интересный факт! Если вращать прямоугольный треугольник вокруг одного из катетов, то получится конус. При этом важно, чтобы угол вращения был не менее 360 градусов.


Общая формула объёма фигуры

Чтобы найти объём кругового конуса, необходимо умножить число Пи на его высоту, на радиус в квадрате и всё это произведение поделить на три:

Объем конуса

Дополнительная информация! Чтобы узнать объём фигуры, нужно умножить площадь её основы на высоту и поделить на три:

Объем конуса

Объём усечённого конуса

Это часть прямого конуса, которая находится в пространстве между основой и плоскостью, параллельной этому основанию. В общем виде выглядит следующим образом:

Усеченный конус

Объём данного тела можно вычислить по формуле:

Объем усеченного конуса

Важно! S и S1 это площади соответствующих основ, которые равняются ПR2 и ПR12 При нахождении этих значений поможет онлайн калькулятор.

Площадь поверхности фигуры

Для вычисления данного параметра потребуется знать площадь боковой поверхности. Она равняется произведению числа π, радиуса и длины образующей.

Площадь поверхности конуса

Чтобы рассчитать площадь всей поверхности, нужно сложить площади его основы и боковой поверхности.


Площадь усечённого конуса

Для нахождения данного параметра нужно воспользоваться формулами:

  • площади боковой поверхности усечённого конуса Sбок;

  • полной площади усечённой фигуры Sпол, которая равна сумме площадей двух оснований и площади боковой поверхности:

Площадь усеченного конуса

Здесь l - длина образующей, а R и r - радиусы большего и меньшего оснований соответственно.


Уравнение конуса

Часто требуется при решении математических задач. Записывается в следующем виде:

Уравнение конуса

где x0, y0,z0- координаты по соответствующим осям.

Таким образом, в данной статье были представлены основные сведения, которые могут понадобиться при решении задач на тему «Конус».