Силовые линии электрического поля

Свойства и форма изображения распределения позволяет судить о течении явления, определять его главные характеристики. То есть анализировать поле, находить его неоднородности и величину напряжённости.

Общие сведения

Неким фундаментальным свойством природы является электрический заряд. Один из разделов физики занимается изучением его свойств и взаимодействия, называется он электродинамикой. Наиболее интересно для учёных изучение влияния друг на друга заряженных тел.

Бум исследования электрических явлений пришёлся на XIX век. В это время появилось две теории, одна из которых оказалась ошибочной и была опровергнута экспериментами. Эта догадка называлась правилом дальнодействия. Согласно ей один заряд непосредственно действует на другой. То есть чем больше расстояние между взаимодействующими телами, тем меньше сила действия.

Силовые линии электрического поля это

Но на самом деле электрические заряды влияют друг на друга по-другому. Эта теория получила название «Правило близкодействия». Как оказалось, если взять два заряженных тела, например, положительно, то первый заряд на второй не действует. Он просто изменяет вокруг себя пространство, создавая нечто. Эта материя и получила название «Электрическое поле». Именно оно и воздействует на второе тело. Другими словами, на заряд действует материя, создаваемая первой частицей. При этом распространяется она с довольно большой, но конечной, скоростью.

Опыты, проводимые Фарадеем, показали, что если из системы убрать одно из тел, то сила, действующая на вторую частицу, не изменится мгновенно, хотя это и произойдёт довольно скоро. Именно Фарадей и является открывателем электромагнитного поля. В дальнейшем Максвелл смог описать явление теоретически.

Им было установлено, что заряд испытывает влияние поля, даже если поблизости его нет других частиц. Эта сила представляет собой электромагнитную волну.

Электрическое поле можно обнаружить, поместив в неё другой заряд, и исследовать действие наблюдающийся силы. Электромагнитную материю можно описать количественно, поэтому, зная характеристики поля и заряда, можно определить величину силы.

Линии напряженности

К основным параметрам электростатического поля, то есть материи, созданной неподвижной частицей в пространстве, относят:

  • напряжённость;
  • потенциал.

Таким образом, если есть система заряженных тел, то в любой её точке будет существовать силовое электрическое поле. Его можно исследовать через силу, действующую на заряд, находящийся в этой материи.

Так как визуально вектор увидеть нельзя, то используют так называемые силовые линии, указывающие, куда направлено воздействие.

Свойство линий

За величину силы электрополя в пространстве окутывающего тело принимают количество заряда обратного квадрату расстояния до него. Принято, что направление распространения действия направлено от положительного потенциала к отрицательному. Обозначают поле буквой E, а напряжённость H. Причём это векторная величина, представляемая в виде стрелки с определённой длиной и направлением.

Что такое силовые линии электрического поля

Так как заряд — это источник, то его окружает множество векторов напряжённости. Чтобы не изображать их бесчисленное число, используют силовые линии. Другое их название — интегральные кривые. По сути, это объединённые векторы, где они сами являются касательными к точкам.

Распространение силовых кривых подчиняется определённым правилам.

К основным из них относят следующие:

  • линии имеют начало и конец;
  • если силы выходят из одной точки или сходятся в ней, то такое распределение будет радиальным;
  • когда кривые не пересекаются, то материя считается однородной, в ином же случае неоднородной (силовые линии не параллельны);
  • силы электрического поля всегда перпендикулярны поверхности тела.

Изображение линий подчиняется различными правилами. Так, для частиц с большим зарядом плотность линий должна быть выше, чем с меньшим. Если заряд недалеко от источника, то плотность силовых линий гуще. Для кривых проходящих перпендикулярно первичным силам используют эквипотенциальное изображение. Такой тип образуют замкнутые контуры. В них каждая точка напряжённости будет иметь одинаковое значение потенциала. При пересечении частицей линий говорят о совершении работы.

 линии напряженности электрического поля

С помощью линий наглядно показывают направление вектора напряжённости в разных точках материи. Для этого их рисуют так, что касательная к каждой будет параллельна напряжённости. Но из-за того, что прямая указывает направление вектора с точностью до 180°, задают полярность обхода. Поэтому стрелку чертят так, чтобы она была сонаправлена с напряжённостью.

Силы электрического поля не могут пересекаться, а эквипотенциальные кривые образуют замкнутые контуры. В тех же точках, где линии перекрещиваются друг с другом, взаимодействие происходит в перпендикулярной плоскости.

Иными словами, на рисунке получается изображение, напоминающее собой координатную сетку. Причём по точкам пересечения и описывают характер электрополя.

Напряжённость поля

Взаимодействие между заряженными телами описывается количественной характеристикой, определяющей структуру материи. Эта величина называется напряжённостью и определяется из отношения E = F / q, где F — сила, а q — заряд, помещённый в поле. Для однородной изотропной среды выражение можно получить, используя закон Кулона: E = (1 / 4 pE) * (q * r / er 2 r), где r — радиус-вектор.

Линии распространения напряжённости поля одинокого заряда во всех точках имеют радиальный вид. Кривые лежат от частицы при q > 0, к телу при q < 0. Для нескольких же носителей вводится понятие — пробный заряд. Он представляет собой результирующую напряжённость, определяемую суммой векторов сил, разделённых на значение введённой характеристики. Такой подход определения называется принципом суперпозиции.

Силовые линии электростатического поля

Используя его, можно определить напряжённость как для системы одиночных носителей, так и проводника в целом. В последнем случае происходит непрерывное перераспределение. Именно поэтому заряженное тело можно представить как совокупность элементарных частиц dq.

Изображать непрерывными линиями напряжённости невидимое поле было предложено Майклом Фарадеем. С их помощью стало возможным определить количественное значение действующей силы. Показывают её с помощью изменения плотности, которую выбирают пропорционально векторам напряжённости по модулю. Другими словами, определяют число кривых, пронизывающих единичную площадь перпендикулярно к поверхности.

Поток вектора напряжённости можно вычислить по формуле: F = E * S * cos (a). Для неоднородного поля выражение проекции находят как произведение вектора площади на энергию материи: dF = E * dS. И в первом, и во втором случае поток считается скалярной величиной. Когда же рассматриваемая поверхность криволинейная, то площадь разбивается на простые контуры. В этом случае поток находится как сумма пронизывающих линий через элементарные поверхности. В любом случае поток, являясь алгебраической величиной, зависит от конфигурации поля и направления.

Изображение напряжённости даёт возможность получить полную картину, которая наглядно показывает, чему равна напряжённость в каждой точке поля и как она изменяется. Какой густоты рисовать линии — неважно.

Главное, их нужно изображать в примерном соотношении. Но хоть плотность векторов ничем не ограничивается при изображении, нужно учитывать их направление. Стрелки как раз и указывают, в какую сторону распространяются волны.

Физика распространения

Если рассматривать одинокую частицу, то линии силы будут исходить от неё в радиальном направлении. При взаимодействии же двух и более зарядов на вид распространения влияет напряжённость. Чтобы нарисовать, как будут выглядеть линии, следует сложить векторы напряжённости. Их результирующая и будет характеризовать суммарное поле.

При составлении картинки распространения поля нужно учитывать, что точки соприкосновения на силовой линии определяются вектором напряжённости. Чтобы математически описать силовые кривые, необходимо составить уравнения. Вектора в них будут являться производными первого порядка. По сути, это обыкновенные касательные.

Силовые линии

Каждая частица, добавленная в электромагнитное поле, оказывает на него влияние. Соответственно будет изменяться и узор кривых сил. Но в любом случае основой для построения визуализированного рисунка будет вектор напряжённости каждого источника поля. При этом правило, что линии напряжённости начинаются на положительном заряде, а заканчиваются на отрицательном, условное.

Довольно интересным для изучения является процесс возникновения электрического поля между заряженными бесконечными плоскостями. Созданная однородная материя между пластинками будет распространяться в параллельном направлении, то есть линии пересекаться не будут. Если же в зазор между ними внести точечный заряд, то кривые начнут изгибаться по дуге, поле станет неоднородным, а значение напряжённости будет зависеть от плотности.

Распространение поля подчиняется следующим правилам:

  • излучается во все направления;
  • изменяет свой рисунок при оказании внешнего воздействия;
  • уменьшается при удалении от источника;
  • может быть как однородным, так и неоднородным.

Электрические силы при внесении заряженной частицы в поле совершают работу. При незначительном воздействии её можно описать так: A = F * l * cos (a) = E * q * L. Таким образом, структура распространения зависит от расстояния между частицами.

Если же изменить направление перемещения заряженного тела на противоположное, то знак поменяет и работа. А это значит, что замкнутая траектория кулоновских сил будет равна нулю.