Площадь прямоугольного треугольника равна

Свойства треугольника

Пожалуй, в жизни любой человек сталкивается с треугольниками. Они бывают разными: остроугольными, тупоугольными, прямоугольными, равнобедренными и равносторонними. Но всех их объединяет один признак — существование трёх углов. Точное определение фигуре дали ещё в Древней Греции. Евклид утверждал, что этот объект состоит из трёх точек, расположенных на разных прямых, и трёх замкнутых линий, поочерёдно соединяющих эти точки.

Площадь прямоугольного треугольника через катеты

Три точки, ограничивающие отрезки, называют вершинами, а линии, соединяющие их, — сторонами. Внутреннюю плоскость, заключённую в линии, называют площадью. Так как отрезки фигуры образуют три угла, то объект относится к классу многоугольников. Замкнутая прямая, соединяющая вершину с серединой противолежащей стороны, носит имя медиана. Всего их может быть три штуки, пересекаться они могут в одной точке, которую называют центроидом. Он является центром тяжести.

Если из угла провести перпендикуляр к противолежащей стороне, то полученная линия будет высотой. Линия, опущенная к стороне напротив угла и разделяющая его пополам, называется биссектрисой. В любой треугольник можно вписать окружность. Она будет единственной, так как должна касаться всех трёх сторон. Центр круга всегда будет совпадать с местом пересечения биссектрис.

Разделение треугольников происходит по размерам углов и сторон. Например, у равносторонней фигуры любой из трёх углов равен 60 градусам, у равнобедренной — две стороны и два угла равны. Для любого треугольника справедливо утверждать следующее:

Площадь прямоугольного треугольника

  • всегда напротив длинной стороны будет находиться больший угол;
  • если две стороны равны, то напротив них будут равные углы;
  • при сложении значений всех углов сумма составит 180 градусов;
  • продолжив сторону за пределы объекта, можно получить внешний угол;
  • одна из сторон всегда будет меньше суммы оставшихся и больше их разности.

В элементарной математике часто используют правила, называемые признаками подобия и равенства. Так, при сравнении две фигуры будут равными, если длины их сторон совпадают. Соответственно, углы тоже станут одинаковыми или будут равными две стороны и угол между ними.

Прямоугольная фигура

Треугольник с одним прямым углом, то есть составляющим 90 градусов, называется прямоугольным. Два отрезка, примыкающие к нему, называют катетами, а прямую, соединяющую их, — гипотенузой. Из любого треугольника можно получить две прямоугольных фигуры. Для этого нужно в нём опустить высоту. Многие свойства многоугольника идентичны прямоугольной фигуре. Два равных треугольника можно объединить в прямоугольник, при этом их гипотенузы будут совпадать с диагональю.

Основную особенность фигуры, которая позволяет посчитать площадь, подметил ещё Пифагор. Она очень простая и записывается как с2 = а2 + b2. В соответствии с этим правилом квадрат гипотенузы равняется результату сложения квадратов катетов, то есть сумма площадей квадратов, достроенных на катетах, совпадает с площадью квадрата, построенного на гипотенузе. Кроме основного свойства, чтобы найти площадь прямоугольного треугольника, нужно знать следующие правила:

Площадь треугольника прямоугольного

  • при сложении двух острых углов сумма будет равняться 90 градусов;
  • гипотенуза у фигуры всегда будет больше катета;
  • длину катета, расположенного напротив угла в 30 градусов, можно найти, разделив гипотенузу пополам;
  • катеты в прямоугольном треугольнике одновременно являются его высотами;
  • величина радиуса описанной окружности совпадает с медианой.

Из теоремы Пифагора можно сделать важное следствие. Становится очевидным, что высота, опущенная из прямого угла, разделит гипотенузу на два отрезка: c1 = a2/c и c1 = b2/c. Полученные замкнутые линии являются проекциями катетов. В то же время высоту фигуры можно определить, используя следующую формулу: h = √ca + cb.

Если угол, располагающийся напротив катета a, обозначить альфой, а напротив b — бетой, то справедливо утверждать, что гипотенуза будет равняться: c = b /sin b = a / sin a = b / cos a = a / cos b = h = √a2 + b2. Другими словами, длины катетов можно вычислить, используя синус противолежащего угла или косинус прилежащего. То есть получатся равенства: a = c * sin a = c * cos b и b = c * cos a = c * sin b. Учитывая тригонометрические правила, катеты можно найти, используя тангенс. Так, сторона b = a * tg b, катет a = b * tg a.

Как найти площадь прямоугольного треугольника

Все рассмотренные формулы и свойства помогают при нахождении площади фигуры. Но кроме них полезно знать и то, что радиус вписанной окружности в прямоугольную фигуру можно узнать, найдя разницу суммы катетов и гипотенузы, разделённую на 2, то есть r = (a + b — c) / 2.

Формулы площади

Найти площадь треугольника с прямым углом можно различными способами. Но проще всего это сделать через катеты. Выражение для нахождения параметра довольно простое: S = (a * b) / 2. Это классическая формула площади прямоугольного треугольника. Существуют и другие формулы:

  • S = (a2 * tg b) / 2;
  • S = (a2 * ctg a) / 2;
  • S = (b2 * tg a) / 2;
  • S = (b2 * ctg b) / 2.

Площадь прямоугольного треугольника формула

Другими словами, площадь можно определить, зная значения двух катетов, длину одного из них и разворот противолежащего или прилежащего угла. Для доказательства теоремы нахождения площади понадобится изобразить фигуры с катетами b и a. Фигуру можно достроить до параллелограмма, отложив параллельные катетам прямые. Вершины полученного объекта можно обозначить буквами A, B, C, D, начиная с прямого угла треугольника и двигаясь влево.

Прямоугольник образуется двумя треугольниками, равными между собой по трём сторонам: AB = CD, AC = BD (ВС — общая сторона). Учитывая равенства, можно утверждать, что площади фигур равны друг другу. Следовательно, площадь параллелограмма можно найти через сумму площадей двух треугольников: S = Sabc + Sacd. Отсюда верным будет утверждение, что площадь начального треугольника ABC равняется половине замкнутой области прямоугольника, а та соответствует произведению сторон: S = a * b, то есть AB * BC.

Эта формула легко доказывается с учётом того, что прямоугольник является фигурой, в которую можно вписать несколько четырёхугольников. Так как общая площадь будет равняться сумме площадей внутренних фигур, то верным будет равенство: (a + b)2 = S + S + a2 + b2 = a2 + 2ab + b2 = 2S + a2 + b2. Отсюда получим, что S = a* b. Следовательно, так как площадь треугольника равняется половине площади прямоугольной фигуры, то можно утверждать, что S = (a * b)/2 = (AB * BC) / 2. Формула доказана.

Формула площади прямоугольного треугольника

Из этого правила вытекают два следствия:

  • площадь равняется половине результата перемножения катетов;
  • когда высоты двух треугольных фигур совпадают, их площади можно соотнести как основания.
  • если угол одного треугольника равен углу другого, то площади объектов соотносятся как результат умножения сторон с одинаковыми углами.

Использование рассмотренных следствий помогает при решении многих геометрических задач. Они касаются не только треугольников, но и других многоугольных фигур.

Решение задач

Важно не только знать формулы для нахождения площади, но и уметь их применять на практике. Это возможно лишь с опытом, который можно получить, решая различные задания. Существуют определённые задачи, которые ученикам нужно решить самостоятельно. После успешного решения можно утверждать, что учащиеся полностью разобрались в теме, поэтому они могут переходить к следующему разделу геометрии. Вот некоторые задания, позволяющие закрепить теоретический материал:

Как найти площадь прямоугольного треугольника

  1. В прямоугольнике одна из сторон равна 35 см, а другая — 50 см. Нужно найти площадь фигур, полученных в результате проведения диагонали. В соответствии с правилом диагональ прямоугольника разделяет его на два равных прямоугольных треугольника, при этом его стороны являются катетами полученных фигур. Отсюда следует, что S1 = S2 = a * b / 2 = 35 * 50 / 2 = 1750 / 2 = 875 см².
  2. Есть прямоугольный треугольник, катет которого равняется 15 см, а гипотенуза — 25 см. Нужно вычислить площадь фигуры. Для решения задачи следует узнать длину второго катета. Сделать это удастся, используя формулу гипотенузы: c = √a2 + b2. Из неё можно выразить неизвестный катет. Его длина будет равняться: b = √c2 — a2 = √252 — 152 = √625 — 225 = √400 = 20 см. Известные данные нужно подставить в формулу площади и выполнить расчёт: S = 20 * 15 / 2 = 150 см².
  3. Длина катета в треугольнике равна 2 * √3 см, а противолежащий ему угол составляет 50 градусов. Необходимо вычислить площадь фигуры. Известно, что сумма углов в таком треугольнике — 180 градусов. Следовательно, разворот прилежащего к катету углу равняется a = 180 — 90 — b = 180 — 90 — 60 = 30 градусов. Теперь можно использовать формулу для нахождения площади прямоугольного многоугольника через катет и тангенс угла: S = (b 2 * tg a) / 2 = ((2 * √3)2 * tg 30) / 2 = (12/2) * (√3/3) = 2√3 см2.

Таким образом, площадь прямоугольной фигуры — ее численная характеристика. Определить ее можно, используя несколько способов. При этом всегда необходимо знать длину хотя бы одного из катетов. Это связанно с тем, что две из трёх высот совпадают с ним.