Митохондрии функции

Важнейшими характеристиками органеллы являются окисление органических веществ и синтез АТФ. Следует подробнее рассмотреть особенности строения митохондрии и её функции в таблице.

Устройство органоида

Главными компонентами митохондрии являются внутренняя и внешняя мембрана, межмембранное пространство и матрикс. Диаметр, как правило, около одного микрометра.

Наружная оболочка

Толщина наружной мембраны порядка 7 нанометров. На ней нет рубцов и неровностей, она замыкается на себя. Площадь внешней оболочки составляет почти 7% от общей площади мембран всех органоидов клетки. Её главное назначение — создание границы между цитоплазмой и митохондрией. В состав верхней оболочки входят липиды с белковыми включениями в пропорции 2 к 1.

 особенности строения митохондрии

Отдельную функцию выполняет белковое соединение порин, образующий каналы. Он создаёт в мембране сквозные проходы диаметром от 2 до 3 нанометров. Сквозь них могут свободно проходить ионы и маленькие молекулы массой не более 5 кДа .

Большие молекулы проходят через внешнюю стенку только с помощью активной транспортировки посредством транспортных веществ оболочек органеллы.

Для внешней мембраны типично наличие ферментов:

  • ацил-СоА-синтетазы,
  • монооксигеназы,
  • фосфолипазы А 2.

Она способна к взаимодействию с диафрагмой ретикулума эндоплазмы, что играет немаловажную роль в перемещении ионов кальция и липидов.

Внутренняя мембрана

В состав внутренней оболочки входят комплексы белков в пропорции белок/липид 3 к 1. Она создаёт своеобразный рисунок в виде множественных складок (Кристы), значительно увеличивающих площадь поверхности. В клетках печёнки она занимает почти 1/3 от всей поверхности клеточных мембран. Состав перегородки характеризуется присутствием кардиолипина — специального фосфолипида, который содержит 4 жирные кислоты и делает стенки совершенно непроходимыми для протонов.

 митохондрии строение и функции таблица

Ещё одной отличительной чертой внутренней мембраны органоида является наличие белков, достигающее 70% от массы. Это транспортные соединения, ферменты дыхательной цепочки и большие АТФ-синтетазные комплексы.

В сравнении с наружной, скрытая мембрана не имеет характерных отверстий для перемещения ионов и мельчайших молекул. На обращённой к матриксу поверхности расположены специфические молекулы АТФ-синтазы, которые состоят из основы, стойки и головки. При проходе сквозь них протонов образуется АТФ. В основе частиц находятся составляющие дыхательной цепочки и заполняют всю толщу мембраны.

У обеих перегородок есть точки соприкосновения, в них находится особый рецепторный белок, помогающий передвижению белков митохондрии, получивших кодировку в ядре, к матриксу.

Периплазматическое пространство

Это пространство располагается между внутренней и внешней мембранами. Его размер колеблется от 10 до 20 нанометров.

 митохондрии

Количество ионов и малых молекул в межмембранном промежутке небольшое и отличается от концентрации в цитоплазме, так как внешняя оболочка органеллы для них проницаема.

Но более массивным белкам для транспортировки из цитоплазмы в периплазматическую область важно обладать специальными сигнальными пептидами.

По этой причине белковые составляющие цитоплазмы и межмембранной зоны различаются. Одним из белков, содержащийся не только в этой области, но и во внутренней оболочке, является цитохром С.

Матрикс

Эта область ограничена внутренней оболочкой. В светло-красной субстанции или матриксе располагаются аппараты ферментного окисления жирных кислот пирувата, а также ферменты оборота трикарбоновых кислот (цикл Кребса). Помимо этого, в матриксе присутствуют ДНК и РНК органеллы, а также механизм митохондрии для образования белков.

Генерация энергии

Главная функция митохондрии — синтез АТФ. Аденозинтрифосфорная кислота (АТФ) — универсальный вид химической энергии во всякой живой клетке. Наравне с прокариотом, молекула АТФ зарождается двумя способами:

  • при субстратном фосфорилировании в жидкостной стадии (гликолизе);
  • мембранным фосфорилированием, которое относится к применению энергии трансмембранного электрохимического градиента протонов (ион водорода).

Органелла пользуется обоими методами: первый подходит для стартовых процессов окисления субстрата в матриксе, а с помощью второго заканчиваются процессы образования энергии и относится он к Кристам органеллы.

Значение митохондрии

Особенность митохондрии, как энергообразующего органоида эукариотов, определяет второй метод образования АТФ, который в биологии называется «хемиосмотическое сопряжение».

Смысл состоит в постепенном преобразовании химической энергии возрождающих эквивалентов НАДН (Никотинамидадениндинуклеоти́д) в электрохимический протонный градиент ΔμН+ с обеих сторон внутренней диафрагмы митохондрии, что активизирует мембранно-связанную АТФ-синтазу и заканчивается появлением макроэргической связи в молекуле АТФ.

Кратко всю схему генерирования энергии в органеллах можно разделить на 4 базовых этапа, первые 2 проходят в матриксе, а остальные 2— на Кристах органеллы:

  1. Преобразование попавших из цитоплазмы в органеллу пирувата и жирных кислот в ацетил-СоА.
  2. Оксидирование ацетил-СоА в цикле Кребса, приводящее к формированию НАДН и двух молекул СО 2.
  3. Перевод электронов с НАДН на кислород по цепочке дыхания с формированием Н2О.
  4. Формирование АТФ по итогам работы мембранного АТФ-синтетазного комплекса.

Наследственность

Дезоксирибонуклеиновая кислота митохондрии почти всегда переходит по линии матери.

Каждая органелла имеет несколько участков нуклеотидов в ДНК, которые имеют абсолютное сходство во всех митохондриях (в клетке множество таких клонов), что очень важно для этих энергетических станций, у которых отсутствует способность восстанавливать молекулы дезоксирибонуклеиновой кислоты от повреждений (замечается большая частота мутаций) .

Весь комплекс наследственных заболеваний человека связан с мутациями в ДНК органеллы.

Число митохондрий в клетке

Основное количество органелл накапливается около тех участков клетки, где появляется потребность в запасах энергии. Например, много органоидов скапливается в месте позиционирования миофибрилл, представляющих собой порцию клеток мускулатуры, заставляющих мышцы сокращаться.

От чего зависит число митохондрий в клетке

В мужских половых клетках митохондрии размещаются возле оси жгута — существуют догадки, что потребность в АТФ объясняется непрерывным вилянием хвостика гаметы. Таким же образом располагаются митохондрии и у простейших организмов, использующих для движения особо приспособленные реснички.

Энергетические станции локализуются под оболочкой прямо рядом с их основанием. В нервных клетках основная часть митохондрий располагается рядом синапсами, посредством которых происходит передача сигналов нервной системы.

В клетках, образующих белки, органеллы наблюдаются в местах эргастоплазмы — они передают энергию, обеспечивающую этот процесс.

Открытие важного клеточного органоида

Митохондрию открыл немецкий учёный Рихард Альтман в 90—94 гг. XIX в., вместе с этим гистолог и анатом из Германии развёрнуто описал органеллу. Своё название митохондрия получила в 1897—1898 гг. благодаря К. Бренду.

 строение и функции митохондрий

Причастность органелл к процессам дыхания клетки смог подтвердить Отто Вагбург в 1920 г. К концу XX в. стало ясно, что, выпуская сигнализирующие молекулы, митохондрии запускают смерть клетки.

Значение митохондрии для любой живой клетки очень важно. Эта структура выполняет роль силовой станции, которая генерирует молекулы АТФ, позволяя происходить процессам жизнедеятельности.

В основе деятельности митохондрий лежит окислении органических соединений, результатом чего генерируется энергетический потенциал.