Мейоз в биологии: клеточное деление с образованием гамет

История открытия: В 1883 г. при изучении гаметогенеза и оплодотворения у червей была выявлена закономерность: в яйцеклетках и сперматозоидах содержится в 2 раза меньше хромосом, чем в зиготе. Детальное изучение гаметогенеза привело к открытию нового типа деления клетки, связанного с уменьшением количества хромосом в гаметах по сравнению с материнским организмом. Определение основных закономерностей мейоза в биологии заняло около 50 лет.

Фазы кратко

Деление проходит в 2 последовательных этапа, которые принято называть мейоз I (или первое деление мейоза) и мейоз II (или второе деление мейоза). Между ними есть короткий период интеркинеза (укороченная интерфаза). Каждый этап состоит из 4 фаз, основные процессы которых представлены на следующей схеме мейоза кратко и понятно:

Фазы мейоза

Во время такого деления происходят постоянные перестройки ядерных структур и цитоплазмы, конденсация и деконденсация ДНК, образование и распад белковых комплексов. Схематично представлен мейоз в такой таблице по фазам:

Название фазы Краткая характеристика
Профаза I Происходит обмен гомологичными генами между хромосомами, подготовка к делению
Метафаза I Хроматин формирует метафазную пластинку
Анафаза I Биваленты разъединяются, и гомологичные хромосомы перемещаются к разным полюсам клетки
Телофаза I Формирование 2 ядер, деление цитоплазмы
Интеркинез Подготовка ко второму делению
Профаза II В каждой клетке растворяется ядерная оболочка, образуется веретено деления
Метафаза II Хромосомы выстраиваются в метафазную пластинку
Анафаза II В каждой хромосоме разъединяются хроматиды и расходятся к разным полюсам
Телофаза II Формируются ядра, происходит разделение цитоплазмы, деление завершается

Первый этап

Диплоидный набор хромосом.

В мейоз вступают определённые соматические клетки после интерфазы. У каждой из них диплоидный набор хромосом. Присутствуют гомологичные пары хромосом, которые несут одинаковые гены, но в разных вариациях, например, кодирующие группы крови А и В. Каждая из гомологичных хромосом состоит из 2 хроматид, в которых гены представлены в одинаковых вариациях.

В результате мейоза образуются клетки с гаплоидным геномом. Каждая из них содержит по одной хроматиде из каждой тетрады и по одной вариации каждого гена. Производство гамет с разными генетическими признаками имеет значение для выживания популяции.

Профаза I

Первый этап самый сложный, поскольку отвечает за перераспределение генетического материала. У человека его продолжительность составляет 22,5 суток. В этой фазе происходит кроссинговер – спаренные хромосомы обмениваются короткими последовательностями ДНК, гомологичными участками. Эта фаза состоит из 5 этапов:

Перераспределение генетического материала.

  1. Лептотена. Хромосомы укорачиваются, спирализируются и конденсируются, становятся видимыми в световой микроскоп. В ядре они расположены беспорядочно.
  2. Зиготена. Гомологичные хромосомы скрепляются друг с другом с помощью белковых субъединиц – происходит конъюгация. Такие структуры, состоящие из 4 хроматид, называются тетрадами или бивалентами.
  3. Пахитена. Гомологичные хромосомы тесно связываются друг с другом, в некоторых местах происходит сближение, перекрещивание (образуются хиазмы) и обмен небольшими параллельными участками.
  4. Диплотена. Генетический материал частично деконденсируется, раскручивается и используется – происходит синтез РНК и белка. Такие деконденсированные биваленты получили название хромосом типа ламповых щеток.
  5. Диакинез. Хромосомы снова конденсируются. Клетка готовится к делению: растворяется ядерная оболочка, центриоли передислоцируются к разным полюсам клетки.

Метафаза I

В профазе к делению готовится генетический материал, в метафазе – другие клеточные структуры. Ядро лишено оболочки, биваленты располагаются по экватору клетки, образуя метафазную пластинку. К каждой хромосоме прикреплено веретено деления.

Анафаза I

При участии веретена деления к полюсам клетки подтягивается по одной хромосоме из каждой тетрады. В клетке сформированы два гаплоидных генома – у каждого из двух полюсов. Но клетку продолжают считать диплоидной до разделения цитоплазмы.

Анафаза клетки

Телофаза I

Цитоплазма клетки делится на 2 части. У растений - путём достраивания поперечной клеточной стенки, у животных цитоплазматическая мембрана инвагинируется и перешнуровывается. Формируются ядра. Образуется 2 клетки с неудвоенным набором хромосом, состоящих из 2 хроматид. Эти клетки имеют только по одной вариации каждого гена.

Второе деление

Второе деление происходит после короткой паузы – интеркинеза. В отличие от интерфазы, характерной для митоза, в интеркинезе не происходит удвоения генетического материала. Во второе деление вступают две клетки с гаплоидными геномами.

Профаза II

В клетках разрушаются ядерные структуры: мембраны и ядрышки. Хромосомы уплотняются, конденсируются. Экватор клетки теперь перпендикулярен экватору в первом делении. Центриоли передвигаются к противоположным полюсам, выстраивается веретено деления.

Профаза II

Метафаза II

Хромосомы упорядоченно размещаются в экваториальной плоскости. Метафазные пластинки на двух этапах мейоза взаимно перпендикулярны. Веретено деления связывает центриоли и хроматиды.

Анафаза II

К противоположным полюсам клетки расходится по одной дочерней хроматиде из каждой хромосомы. В делящейся клетке формируется 2 редуцированных генетических набора, но клетку считают гаплоидной до полного разделения цитоплазмы.

Телофаза II

Заканчивается редукционное деление. Заново формируются ядерные мембраны, разделяется цитоплазма. Из 2 клеток с гаплоидным геномом образуются 4 гаметы, где по-разному скомбинированы генетические признаки. При гаметогенезе у мужчин цитоплазма делится поровну между 4 сперматозоидами.

Телофаза II

При гаметогенезе у женщин основная масса цитоплазмы отходит к яйцеклетке, большую часть трех остальных клеток занимает ядро. Эти клетки называют полярными тельцами.

Как происходит редукция генетического набора, хорошо иллюстрирует таблица с рисунками мейоза по фазам, где с - количество хроматид, а n - количество хромосом:

Профаза I

Метафаза I

Анафаза I

Телофаза I

Профаза II

Метафаза II

Анафаза II

Телофаза II

Фаза Геном Иллюстрация
Профаза I 4с 2n
Метафаза I 4с 2n
Анафаза I 4с 2n
Телофаза I 2с 1n
Профаза II 2с 1n
Метафаза II 2с 1n
Анафаза II 2с 1n
Телофаза II 1с 1n

Типы мейоза

В жизненном цикле эукариотических организмов мейоз может занимать разное положение. В зависимости от этого выделяют 3 типа мейоза:

Типы мейоза

  • Зигоический. У некоторых одноклеточных организмов мейоз происходит сразу после слияния двух гамет. Организм диплоиден только на стадии зиготы, а основной период жизни пребывает в гаплоидном состоянии. Такое явление характерно для дрожжей.
  • Промежуточный. У архегониальных растений (моховидных, папоротников, плаунов) есть гаплоидная фаза жизненного цикла. В результате мейоза образуются споры, из которых прорастают заростки – многоклеточные гаплоидные организмы или гаметофиты. Заростки образуют гаметы. После слияния гамет (оплодотворения) происходит образование диплоидной зиготы, дающей начало спорофиту. Таким образом, между мейозом и оплодотворением проходит целая фаза жизненного цикла.
  • Гаметическая редукция. Мейоз проходит только при образовании гамет, как у животных. Соматические клетки организма диплоидны. Гаметы живут относительно короткое время: сколько потребуется для оплодотворения.

Существуют и модификации мейоза. Например, для лягушки съедобной характерна такая особенность, как полуклональное размножение. Каждая особь имеет диплоидный набор хромосом, получая от каждого из родителей по гаплоидному набору. Перед мейозом один из родительских наборов удаляется, а второй – удваивается. Гаметы получают набор хромосом, полностью идентичный таковому одного из родителей особи. В профазу 1 мейоза рекомбинации не происходит, поскольку перед вступлением в деление клетки несут только по одной вариации каждого гена.

В процессе мейоза происходит образование гамет с редуцированными геномами и разными генетическими наборами. У диплоидных организмов образуются гаметы с гаплоидным набором хромосом.

Это необходимо для того, чтобы после оплодотворения у зиготы снова восстановился диплоидный генетический набор. Кроссинговер обеспечивает формирование гамет с разнообразными генотипами, что способствует выживанию популяции.