Моногибридное скрещивание

При этом результаты процесса будут зависеть от очередности поколения, давая чистую доминанту для первого из них и расщепление для второго, и более подробное ознакомление с его основными законами и понятиями поможет найти ответы на важные вопросы.

Основные термины и понятия

В основе любой схемы моногибридного скрещивания лежит генетика — наука, изучающая все ключевые закономерности наследственности и изменчивости организмов вследствие селекции. И главный вопрос, который изучается при исследовании моногибридного скрещивания, — моногенное наследование. Под ним подразумевается наследование, проявление которого обусловлено одним конкретным геном с его различными формами-аллелями.

Их краткая характеристика такова:

Селекция

Первый и второй законы менделя

  • Ген. Под этим определением понимают строго определенный участок молекулы дезоксирибонуклеиновой кислоты (в дальнейшем по тексту ДНК). Именно этот участок несет ответственность за дальнейшее проявление конкретного признака и синтез какой-то определенной белковой молекулы, соответствуя схеме «ген — белок — признак».
  • Гомологичные хромосомы. Под это понятие попадают хромосомы парного типа, характеризующиеся идентичной формой, величиной, а также характером информации о наследственности.
  • Аллели (аллельные гены). Для аллельного типа ген свойственно одинаковое расположение на участках гомологичных хромосом, именуемых локусами.
  • Альтернативные признаки. Под ними подразумеваются противоположные характеристики одного и того же признака. В качестве часто встречающегося примера можно привести разный цвет глаз или волос у родителей.
  • Доминанта (доминантный признак, обозначающийся индексом А). Из одного названия становится очевидно, что речь идет о преобладающем признаке, всегда проявляющемся в потомстве, но только в гомозиготном или в гетерозиготном состоянии.
  • Рецессивный признак (обозначается маленькой литерой а). В отличие от доминанты этот ген, напротив, является подавляемым, вследствие чего он может проявляться исключительно в гомозиготном состоянии.
  • Гомозигота. Обозначается индексами АА или аа, так как эта зигота подразумевает скрещивание одинаковых аллельных ген доминирующего или подавляющего типа.
  • Гетерозигота. Эта зигота образуется при скрещивании генных аллелей противоположного типа, образуя комбинацию Аа.
  • Генотип — определенный набор генов (наследственных признаков), полученных от родителей.
  • Фенотип. Под этим понятием подразумевается общая совокупность основных признаков и свойств организма, которые проявляются только при взаимодействии генотипа со средой обитания. То есть в отличие от генотипа речь идет о переменной величине, напрямую зависящей от воздействия определенных внешних факторов.

Помимо моногибридного, существует еще несколько типов скрещивания, обладающих особыми свойствами и закономерностями.

Что касается рассматриваемого типа, осуществляемого только по одной паре признаков, то его можно условно классифицировать по двум схемам моногибридного скрещивания. Одна из них подразумевает полное доминирование, в результате которого может проявляться только преобладающий признак.

Если же доминирование является неполным, то признак принимает среднее или, как его еще принято называть, промежуточное значение между доминантой и рецессивным геном.

Научные опыты и примеры

Первым ученым, которому удалось выявить и доказать существование определенных закономерностей наследования признаков при моногибридном скрещивании, стал австрийский монах-августинец Грегор Иоганн Мендель, изучавший биологию и ботанику. Произошло это важное для науки открытие в XIX веке в результате проведения опыта, в процессе которого ученый провел скрещивание гороха, имеющего пару отличительных признаков.

Первый закон Менделя

Для того чтобы определить наличие закономерности при скрещивании разных живых организмов и выполнить составление на основе полученных результатов таблицы вероятности формирования наследственных признаков, Менделю пришлось анализировать 22 сорта гороха, имеющих отличительные характеристики по ключевым показателям.

Речь шла о следующих различиях, задействованных в опыте родительских бобовых культур:

Задачи с решением закономерности наследования признаков при моногибридном скрещивании

  • По форме семени. Для проведения опыта Мендель использовал не только круглое, но и морщинистое семя.
  • По цвету. Задействованы были сорта с желтым и зеленым семенем.
  • По форме самих бобовых. Ученый применял как гладкие, так и сморщенные горошины.
  • По расположению цветочных бутонов на стебле. В используемых сортах цветки располагались в пазухах и на верхушках растений.
  • По высоте самого растения. В эксперименте приняли участие как карликовые сорта, так и культуры нормального размера.

Главное различие между первым и вторым законом Менделя заключается в характеристиках, свойственных I и II поколениям, полученным в результате селекции родителей с противоположными генами.

Так, согласно наблюдениям ученого при скрещивании двух разных особей, первое гибридное поколение получается одинаковым, походя только на одного из родителей (I закон Менделя), тогда как уже в его потомстве будет наблюдаться расщепление по фенотипу в соотношении 3 к 1.

При более подробном рассмотрении опытов выясняется, что перед процедурой скрещивания Мендель использовал только чистые родительские линии культур, получая интересующее его поколение посредством проведения их опыления. Еще одним ключевым моментом, который выделял ученый, заключался в том, при проведении опыта с растениями, обладающими альтернативными генами, один из них в итоге не будет передан потомку в первом поколении.

Моногибридное скрещивание

По теории Менделя, именно те признаки, которые передаются следующему поколению, будут называться доминантными, тогда как другие гены, так и не получившие своего проявления, — рецессивными, то есть подавляемыми. Примечательно, что эти результаты впоследствии были объяснены таким биологическим процессом, как мейоз, но ученый не мог этого знать, поскольку это открытие еще не было сделано.

Если же рассматривать это понятие сейчас, то объясняется оно особым взаимоотношением генов, ведь в природе нет равнозначных аллелей, и все они доминируют или рецессируют по сравнению друг с другом в условиях анализа конкретных признаков. В итоге получается, что в случае проникновения вместе с гаметой в зиготу двух разных аллелей (гетерозигота), проявится та из них, которая будет преобладать.

Что же касается гена рецессии, то он может проявиться только тогда, когда конкурирующая с ним аллель также окажется подавляемой (гомозигота), причем с равной степенью вероятности. Стоит отметить, что в первой закономерности, выведенной австрийским ученым, применялись исключительно идентичные по генотипу и фенотипу растительные организмы, оттого ей и было присвоено название закона единообразия I поколения.

Вторая закономерность

Выведя первую закономерность, ученый решил не останавливаться на достигнутом, решив вырастить полученное в результате селекции гибридное семя и задействовать его в проведении дальнейших опытов. Каково же было его удивление, когда при последующем скрещивании выращенных гибридов с чистопородными видами, стало возникать расщепление между поколениями второго порядка, причем по строго определенной схеме.

Схема моногибридного скрещивания

То есть при скрещивании выведенного доминанта первого поколения с рецессивным геном в их потомстве присутствовали представители и первого, и второго гена в соотношении ¾ (из четырех три горошины доминирующие желтые и одна подавляемая зеленая), что было невозможно при первом опыте с чистопородными особями. Естественно, речь идет о статистической погрешности, высчитанной Менделем от общего количества исследуемых горошин второго поколения.

Проще говоря, необязательно родить четверых детей, чтобы самый младший из них унаследовал рецессивный голубой цвет глаз отца или бабушки, а первые три — доминирующий карий по материнской линии. Так, результат расщепления может возникать сразу, проявляясь у первого ребенка, другое дело, что вероятность такого проявления будет составлять ¼ против ¾, свойственной доминанте.

Задачи и их решение

Изучив первый и второй закон моногибридного скрещивания Менделя, стоит закрепить полученные знания на практике. И существует множество простых задач по моногибридному скрещиванию с решением, ознакомление с которыми поможет не только не совершать распространенных ошибок, но и научиться неплохо разбираться в рассматриваемом вопросе в целом.

Цвет глаз

Одна из популярных тем — цвет глаз, который может унаследовать ребенок от своих родителей. К примеру, в семье Никитиных дочь родилась с карими глазами, а сын с голубыми, тогда как их мать голубоглазая, а ее родители кареглазые. Вопрос заключается в том, по какому принципу идет унаследование этого признака и каким генотипом обладают члены семьи.

 моногибридное скрещивание животных

Чтобы ответить на него, необходимо в первую очередь проанализировать генотип голубоглазой матери и ее кареглазых родителей, ведь так как коричневый цвет преобладает над голубым, то такая наследственность становится возможной только в случае гетерозиготности дедушки и бабушки (Аа).

Что же касается детей, то кареглазая дочь также является гетерозиготной, тогда как ее брат, получивший по наследству голубые глаза, как и сама мать, напротив, относятся к гомозиготным с сочетанием aa по рецессивному признаку (карие глаза подавляют голубые).

Гребень птицы

Знание основных понятий моногибридного скрещивания зачастую применяется на практике и в народном хозяйстве, позволяя фермерам выводить определенную породу птицы, скота и другой живности. Хорошим тому примером может стать задача о петухе и двух курицах с гребнем розовидного типа, при скрещивании которых удалось вывести 14 цыплят с аналогичным признаком от одной несушки и 9 от другой, притом что 7 из них унаследовали родительский ген, а оставшиеся 2 — нет, получив листовидную пластинку на головке.

Вопрос к заданию, как и в предыдущем случае, заключается в определении генотипов всех трех участников скрещивания с учетом того фактора, что сам признак относится к аутосомным моногенным генам. Уже из одного только условия становится очевидно, что первая курица была гомозиготной, дав чистопородный выводок. Однако этого нельзя сказать о второй несушке, которая дала небольшой процент цыплят с отличающимся признаком, являясь гетерозиготной.

А так как количество цыплят с другим геном оказалось гораздо меньшим по сравнению с основным, становится очевидно, что он является рецессивным, уступая доминанте, коей и является аллель розовидного гребня.

Анализ по двум признакам

Естественно, биологические задачи не ограничиваются проведением анализа по одному только гену. К примеру, может потребоваться вычислить наследственность по цвету и по превосходству одной руки над другой. При этом условие задачи может иметь следующее содержание:

  • Дано: у праворуких родителей с карими глазами родились двойняшки. Один из младенцев унаследовал родительский цвет глаз, но получил преобладание левой руки над правой, тогда как второй родился правшой, но с голубой радужкой.
  • Найти: необходимо вычислить признаки, которые может получить следующий ребенок в семье.

Для решения этой задачи необходимо определить генотипы всех перечисленных членов семьи, отталкиваясь от того факта, что карие глаза доминируют над голубыми, а преимущество правой руки перед левой. В итоге получается, что оба родителя по первому и второму признаку имеют генотипы Аа и Вв, соответственно. По такому же принципу можно расписать и генотип детей, представив его в виде комбинации А_Вв для первого близнеца и АаВ_ - для второго. На основе этих данных составляется вспомогательная таблица Пеннета:

 моногибридное скрещивание первый и второй законы менделя

Из представленных 16 вариантов только 9 подходят под заданные условия. Это означает, что вероятность появления в семье младенца, который будет иметь идентичные родительским признаки, соответствует 9/16.