Движение частиц в магнитном поле

Её главная особенность — для неё не выполняется третье утверждение Ньютона, но справедливо правило сохранения импульса. При этом макроскопическим проявлением перемещения является закон взаимодействия токов.

Общие сведения

Ещё в III—II тысячелетии на острове Магнезия были обнаружены камни, обладающие странными свойствами. Они имели способность притягивать к себе железные предметы. Эти вещества в честь острова получили название магниты. Так как их свойства сохраняются в течение длительного времени, их считают постоянными. Было установлено, что если такой камень разместить на поплавке и положить на него магнит, при его развороте он вернётся в начальное положение. Другими словами, он всегда стремится ориентироваться определённым образом.

Если взять 2 магнита, то, в зависимости от их расположения, они могут притягиваться друг к другу или отталкиваться. Этот эффект объясняется наличием у намагниченных веществ двух полюсов. В 1820 году Христиан Эрстед читал лекцию о тепловом действии тока. Он через проволоку пропускал электричество, демонстрируя, как она разогревается.

Во время эксперимента один из студентов обнаружил, что когда замыкалась цепь, стрелка у рядом находящегося компаса отклонялась. Это вращение и позволило обнаружить связь между электричеством и магнетизмом.

Движение заряженных частиц в однородном магнитном поле

Учёный начал экспериментально изучать эффект. Он предположил, что, так как электрический ток — направленное движение в проводнике заряженных частиц, существует какая-то сила, возникающая вокруг проводящего тела. Обнаружить её можно с помощью компаса. Эту особую пространственную материю назвали магнитным полем. Воображаемые направления, вдоль которых бы расположились стрелки компасов, назвали силовыми линиями.

Опытным путём были установлены характеристики, описывающие движение заряженной частицы в магнитном поле.

К основным из них относят:

  1. Индукцию. Это плотность магнитных линий. С их помощью вещества разделяют на однородные и неоднородные. В первых магнитная индукция в каждой точке материи имеет одинаковое значение. Определяют её как отношение потока к площади поперечного сечения проводника.
  2. Проницаемость. Описывает способность среды создавать магнитные силы. Величиной, характеризующей это свойство, является абсолютное значение.
  3. Напряжённость. Изменяется в зависимости от силы тока в проводнике и его формы.

Описать магнитную материю можно численно и направлением. За её ориентацию принимается северная сторона, на которую указывает стрелка компаса.

Либо за неё можно принять расположение положительной нормали с током в рамке. Определяют её по правилу буравчика.

Рамка с током

Физиками было установлено, что если взять рамку и пропустить по ней ток, магнитное поле окажет влияние на электроны. В результате происходит их обращение. Вращательное действие силы характеризуется моментом энергии. Именно он и описывает действие материи.

 силы действующие в магнитном поле

Пусть в магнитном поле расположена прямоугольная рамка. По ней циркулирует ток против часовой стрелки. Вектор индукции направлен вверх. За направление магнитных линий принимается положительная нормаль. По правилу буравчика, если направление поступательного движения винта будет совпадать с направлением тока в проводнике, то вращение винта укажет расположение вектора магнитной индукции поля, создаваемого движением частиц.

Угол между нормалью и вектором обозначают буквой альфа. Естественно, что рамка стремится развернуться так, чтобы быть перпендикулярно полю. Но если она не совпадает с ним по направлению, на неё действует момент силы. Чтобы провести расчёты, необходимо выбрать ось относительно рамки.

Пусть она будет проходить параллельно длинным линиям прямоугольника. Для удобства длина её будет равняться a, а ширина b.

На такую установку будет действовать сила Ампера. Её определение звучит так: модуль вектора равен произведению магнитной индукции на силу тока в проводнике, его длине и синусу угла между направлением поля и заряженными частицами: F = B * I * L * sin (j). Она действует на все стороны рамки. При этом отличается только по направлению.

На рамку оказываются следующие воздействия:

На какую частицу действует магнитное поле

  1. На дальнюю длинную сторону действует сила равная F1. Значит, на параллельную ей боковую грань воздействие будет противоположно по направлению -F2, поэтому силы принимаются по модулю. Так как значение тока везде одинаковое, можно записать: F = |F1| = |F2|.
  2. На короткие грани действуют силы, перпендикулярные проводнику. Они будут не поворачивать, а растягивать рамку. Соответственно, их можно обозначить как F3 и F4.

F1 и F2 создают нулевой момент. Они параллельны и направлены в противоположную сторону, образуют пару силы действующих в магнитном поле. Вычисляется она по формуле: M = F * d, где d — расстояние между воздействующими линиями энергии. Таким образом, момент силы в рамке будет определяться так: M = B * a * b * sin (j).

Если принять, что на прямоугольнике намотан провод с числом витков n, а произведение a * b — это площадь, формула примет окончательный вид: M = B * S * n * sin (j).

Сила Лоренца

Магнитное поле действует только на ту частицу, что подвергается воздействию силы Ампера. Пока электрон будет двигаться хаотично, никакого магнитного поля вокруг него не возникнет. Причём эта сила перпендикулярна проводнику и полю.

Получается, что причиной возникновения силы Ампера является какая-то материя, действующая на траекторию заряженных частиц, когда они начинают двигаться в поле.

Пусть в проводнике есть носители зарядов. Их массой в этом случае можно пренебречь. Так как частицами являются отрицательно заряженные электроны, движутся они противоположно направлению тока. На каждый заряд действует сила, которая в сумме даст силу Ампера.

Движение заряженной частицы в магнитном поле

Если взять воображаемое увеличительное стекло и посмотреть, что происходит в середине проводника, возможно было бы увидеть следующее: в окружности тела электрон перемещался бы встречно току и испытывал действие силы, перпендикулярной его движению. Именно она и называется силой Лоренца. Кратко её определение звучит так: равнодействующая всех энергий Ампера, действующих на заряженные частицы, которые перемещаются в поле. Обозначают её Fл.

Кинетическая сила возникает только при движении. Если частица нейтральная (нейтрон), воздействие на неё не оказывается. Чтобы рассчитать эту силу, нужно знать длину проводника и скорость перемещения носителей заряда. Время, которое потребуется электрону, чтобы сменить своё положение, определяют из равенства: t = L / V.

Всю совокупность прошедших частиц можно обозначить Qоб. Это общий заряд, прошедший через радиус проводника за t. Он будет равняться: Qоб = I * t = (I * L) / V.

Учитывая определение, можно утверждать, что Fa = Fл * N. Так как количество частиц, находящихся в проводнике, равняется всему заряду в нём N = Qоб / Q, можно записать: N = I * L / V * Q. Отсюда сила Ампера: Fa = Fл * (I * L) / (V * q). Если сделать подстановку Fа и выразить силу Лоренца, формула для её определения примет вид: Fл = Q * V * B * sin (j), то есть она пропорциональна скорости частицы в магнитном поле, вектору направления индукции и количеству зарядов. Причём сила Лоренца будет наибольшей, когда V перпендикулярно B.

Решение задач

Силы в магнитном поле

Исследования движения частиц в поле, вызванном магнитной энергией заключается в нахождении сил Лоренца и Ампера за период протекания электрического тока. Существуют определённые типы заданий, с помощью которых можно лучше понять изученный материал и наглядно увидеть, как тесно геометрия переплетается с физикой. Вот некоторые из них:

  • Плоская прямоугольная катушка со сторонами 10 и 5 см, состоящая из 200 витков, находится в однородном поле с индукцией 0,05 Тл. Какой максимальный винтовой момент может действовать на катушку, если сила тока 2 А. Для решения этой задачи нужно использовать формулу: M = n * B * I * S * sin (j). Наибольший момент будет, когда синус альфа равняется 1. Значит: M = n * B * I * a * b = 200 * 0,05 H / A* m *2 А * 0,1 м = 0, 1 Н * м. Задача решена.
  • Квадратная рамка с током закреплена так, что может свободно вращаться вокруг горизонтально расположенной стороны. Находится она в вертикальном однородном поле индукции B, массой m, а угол наклона к горизонту j. Найти силу тока в рамке. В устройстве циркулирует ток. Значит, существует момент силы. Условие механического равновесия будет выполнено когда: Mmg + Mмаг = 0. Учитывая, что Mmg = mg * d, а d = q * cos (j) / 2 можно записать: Mmg = mg * а q / 2, а Mмаг = - B * I * S * sin (j). На этом шаге можно найти знак по правилу буравчика. Значит: B * I * a2 * sin (j) = (mg * a cos (j)) /2. Отсюда: I = (mg) / (2 * B * a * tg (j)).

     магнитное поле движение частицы

  • Индукция уловителя пылинок на базе масс-спектрометра имеет значение 0,1 Тл. Напряжение создаёт поле 10 кВ. В устройстве ионы попадают на пластинку, являющуюся датчиком загрязнения. Найти, на каком расстоянии от щели будут полосы ионов 2H+.

  • Заряды двигаются по окружности. Согласно второму закону Ньютона: Fл = mg = q * V * B. Центростремительное ускорение: a = V2/ r. Отсюда: r = mV / qB. Пролёт ионов занимает половину радиуса. С учётом равенства mV2 / 2 = q * U, рабочая формула примет вид: X = (2/ B) * √(2mV / q) = 2 А*м / 0,1 Н * √ (2 * 1,67 * 10-27 кг * 104 В / 1,6 + 10-19 Кл) = 0,289 м.

Часто решение задач требует не только знания нескольких формул, но и понимания, на какую частицу действует магнитное поле и какие силы при этом возникают. Кроме этого, приходится условие изображать схематично на рисунке.

Это часто необходимо для правильного определения направлений действующих сил и упрощения понимания задания. Не стоит забывать, что все вычисления выполняются в системе СИ.