Электрический ток в вакууме

Общие сведения

Понятие вакуум сходно слову «пустота». В физике под ним понимают пространство, которое освобождено от любых веществ. Однако учёные считают, что такого места быть не может. Объясняют это они тем, что даже в самом пустом пространстве должны существовать флуктуации. Экспериментально это удалось доказать Генриху Казимиру, описавшему явление в своём конспекте.

Он предположил, что вакуум представляет собой «резервуар» в котором вблизи абсолютного нуля происходит ряд волнений. Его опыт состоял в следующем. Учёный взял две заряженные пластины и поместил их между вакуумным пространством. Под действием внешних фотонов проводники притягивались друг к другу. То есть через пространство проходила хотя и слабая, но сила.

Резервуар с вакуумом

Поэтому в физике существует особый термин — физический вакуум. Под ним понимают замкнутое пространство, в котором давление в несколько раз меньше по сравнению с газовой средой. То есть его величина не оказывает никакого влияния и ей можно пренебречь. Так как электричество образуется при перемещении элементарных носителей зарядов, которые в вакууме практически отсутствуют, при простом воздействии на среду его получить не удастся. Поэтому единственной возможностью пропустить ток через пустоту является добавление в неё заряженных частиц.

В 1879 году Эдисон, изучая причину перегорания нитей в лампах накаливания, обнаружил образование тёмного налёта около анодного вывода. Этот эффект изобретатель объяснял тем, что внутри колбы возникает разряд, вследствие которого заряженные частицы угольной пыли выбиваются с проводника. Он предположил, что если в лампу ввести дополнительный электрод с положительным зарядом, то эти частицы будут им притягиваться.

Так был открыт эффект термоэлектронной эмиссии. Другими словами, испускание заряженных частиц при нагреве проводника до температур 1500 — 2500 о С. При таких величинах электроны разрывают связи и высвобождаются. Это явление сродни испарению молекул с поверхности жидкости. Оно нашло своё применение в вакуумных электронных приборах. Например, используется в электронно-лучевых трубках, ламповых диодах.

Физика процесса

Электрический ток в вакууме может образовываться только направленным движением электронов. Ввести их, возможно, с помощью помещения в среду металла. Для того чтобы частицы покинули поверхность проводника нужно им отдать энергию. Этот процесс называется работой выхода электронов из вещества.

Её значение для разных материалов было установлено экспериментально. Так, для наиболее популярных веществ работа выхода равна:

  • вольфрама — 4,5 эВ;
  • кадмия — 2,2 эВ;
  • цинка — 4,2 эВ;
  • оксида бария — 1 эВ.

То есть для того чтобы извлечь электрон, нужно сообщить ему определённую энергию. Только тогда он сможет вылететь с поверхности. В обычном состоянии энергия электрона в металле составляет 3,2 KT (тепловая). При комнатной температуре (T = 300 K) KT = 0,026 эВ. Этой величины будет явно недостаточно, чтобы появилась электропроводность в вакууме.

Энергия электрона в металле

Если же нагреть тело до 3 тыс. градусов по кельвину (многие металлы начинают расплавляться), то KT = 0,26 эВ. Этого значения всё равно мало для того, чтобы выбить электроны. Но на самом деле носители имеют определённое распределение по энергиям. Найденное значение показывает среднюю величину. Поэтому в теле из-за высокой плотности заряженных частиц обязательно будут такие электроны, которые имеют энергию превышающую работу выхода.

Над поверхностью проводника появляется электронное облако. При этом чем выше температура, тем плотнее оно будет. Вылетевший электрон приводит к изменению заряда металла. В итоге он начинает втягиваться обратно. Устанавливается равновесие. Какое число электронов вылетает, такое же их количество возвращается.

Для того чтобы образовался поток зарядов нужно ввести вспомогательную цепь. Другими словами, сообщить электронам дополнительную энергию. Зависимость между током и напряжением в рассматриваемом случае не будет соответствовать закону Ома. Ведь образованное электронное облако задерживает вновь вылетающие электроны. Но если увеличить напряжение на другом выводе, то концентрация носителей в образованном поле уменьшится, значит, снизится и тормозящий эффект. Это приведёт к увеличению тока.

Таким образом, вылетающие электроны можно уподобить электра ракетам, преодолевшим земное притяжение. Если к выводу присоединить положительный электрод источника тока, то возникшее электромагнитное поле между спиралью и электродом внутри колбы с вакуумом, устремит к нему электроны. Внутри потечёт электрический ток.

Вакуумный диод

Вакуумный диод

Одним из типичных устройств, использующих проводимость безвоздушного пространства, является вакуумная двухэлектродная электронная лампа. Если на её положительный вывод подаётся обратное напряжение, то все испущенные катодом электроны возвращаются. При прямом же смещении носители зарядов устремляются к аноду. Другими словами, происходит выпрямление переменного сигнала. Устройство работает как диод.

Исследовать появление электрического тока в вакууме и газах можно с помощью радиоэлемента, состоящего из следующих частей:

  • запаянной колбы;
  • электрода из металла (анод);
  • вольфрамовой спирали (катод);
  • реостата.

Нить из вольфрама находится в герметичной колбе и подключена через реостат к генератору для регулировки силы тока. Электрод подключён к микроамперметру. С него цепь, проходя через балластный резистор, замыкается на катоде.

Реостатом можно регулировать температуру катода. Переменным сопротивлением устанавливается разность потенциалов между положительным и отрицательным выводом. Вольт-амперная характеристика, то есть зависимость анодного тока от напряжения будет формироваться следующим образом. Допустим, напряжения нет. Тогда электроны, вылетевшие из катода, притянутся обратно. Ток в цепи анода не течёт. Если на вывод подать отрицательный сигнал, то электроны будут отталкиваться. Ток снова не течёт.

Появление электрического тока в вакууме и газах

Когда на анод поступает положительное напряжение, то возникает электрическое поле. Оно создаёт силу, направленную в сторону анода. Скорость полёта электронов разная, так как некоторые из них отталкиваются от уже ранее вылетевших частиц. Чем больше будет напряжённость поля, тем сильнее начнёт протекать ток. Но изменение будет происходить не линейно. Например, если увеличить напряжение в два раза, то число электронов, вылетевших из катода, увеличится в больше раз, чем это число. Чем больше разность потенциалов, тем меньше пространственный заряд электронов.

На графике эта зависимость будет представлять полукубическую параболу. Описать её можно приблизительной формулой: I = U3/2. Если продолжить поднимать напряжение, то напряжённость становится намного больше поля, создаваемого пространственным облаком. Все электроны начнут добираться до анода. Сила тока уже не будет зависеть от напряжения. На ВАХ это изображается прямой линией, а эффект называется током насыщения.

Электронно-лучевая трубка

Электронно-лучевая трубка

В вакуумных радиолампах поток электронов направлен от анода к катоду во все стороны. Но можно создать такие конструкции, в которых электроны будут направлены в одном направлении. Создаётся такой поток с помощью специальных фокусирующих пластин. Его часто называют катодным лучом. С его помощью можно нагревать тела, например, в вакуумных печах.

По своей природе он обладает следующими свойствами:

  • на него действует электрическое и магнитное поле (сила Лоренца);
  • попадая на некоторые вещества, например, сернистый цинк, сфокусированный электронный поток приводит к интересному результату — свечению;
  • луч генерирует рентгеновское излучение.

На этих свойствах и базируется класс вакуумных приборов называемый электронно-лучевыми трубками (ЭЛТ).

Устроено такое устройство следующим образом. Электроны в приборе образовываются с помощью термоэлектронной эмиссии. Катод прибора представляет собой цилиндр с плоским основанием, покрытым окисью бария. Этот электрод испускает электроны. Чтобы управлять их интенсивностью используется сетка. Подавая на неё напряжение, можно запирать поток или отпирать.

Главная деталь в определение электронного потока это его узкая направленность. Добиться этого можно, используя дополнительные анодные выводы. Один из них ускоряющий, а другой фокусирующий. Проходя через указанный набор ускоренный сфокусированный поток вылетает из ЭЛТ. На второй анод подаётся положительное напряжение напрямую, а на ускоряющий через реостат. Разность потенциалов кратна десяткам киловольт.

Схема электронно- лучевой трубки

Вылетев с пушки поток, попадает на экран, покрытый люминофором. Вся эта система находится в колбе с безвоздушным пространством. Для того чтобы можно было перемещать луч по поверхности экрана используют конденсаторы. В зависимости от расположения их пластин происходит отклонение потока. Вызывает его подающееся на обкладки напряжение. От его значения луч может притягиваться к одной стороне или другой, по сути, изменяя поток электрического тока в вакууме. Так, кратко, и работает ЭЛТ.