Виды теплопередачи

Описание процесса

Теплопередача представляет собой один из важнейших физических процессов, состоящий из нескольких простых превращений. Во время него теплота переносится от одного объекта к другому или внутри тела при наличии разности температур. Тепловая энергия присутствует в следующих средах:

  • газы;
  • жидкости;
  • твёрдые тела.

Способы передачи теплоты примеры

Передача тепла — это самопроизвольный процесс, проходящий в свободном пространстве. Энергия распространяется от объектов, которые имеют высокую температуру, к телам с меньшим показателем. Исследования, проведённые учёными, говорят, что теплопередача слишком сложна для рассмотрения её в виде одного процесса. В связи с этим физическое явление было разделено на три следующие вида:

  • теплопроводность;
  • конвекция;
  • излучение.

Характеристика теплопроводности

Теплопроводность — это передача энергии от объекта к объекту или от одной части некоего физического тела к другой посредством теплового движения молекул и атомов. Необходимо отметить, что при этом явлении вещество не перемещается, передаётся лишь внутренняя энергия. Наблюдать теплопроводность позволяет следующий опыт:

Теплопроводность это

  1. К стержню из металла на воск прикреплено несколько гвоздей.
  2. Один конец стержня прочно фиксируют в штативе, а другой начинают нагревать.
  3. Спустя некоторое время гвозди по очереди отпадают.

Это происходит из-за плавления воска, которое вызывает повышение температуры металла. Тот факт, что гвозди отпали не одновременно, свидетельствует о постепенном нагревании стержня. Следовательно, внутренняя энергия тела по мере своего увеличения передавалась от горячего конца к холодному.

Передача тепла имеет ещё одно объяснение, базирующееся на внутреннем строении вещества. Частицы нагреваемого конца стержня из-за внешнего воздействия увеличивают свою энергию. В результате их колебание становится более интенсивным, из-за чего часть полученного потенциала молекулы передают соседним частицам, которые тоже начинают колебаться быстрее. Процесс передачи энергии постепенно охватывает весь стержень. Результатом её увеличения становится повышение температуры объекта.

Теплопроводность различных веществ отличается, даже существуют специальные таблицы, содержащие информацию об этом качестве физических тел. К примеру, если на дно пробирки с водой опустить кусок льда, а её верхний конец нагреть, то вскоре вода, находящаяся рядом с источником огня, закипит, хотя лёд сохранит своё состояние. Из этого следует, что у воды плохая теплопроводность. Этим качеством отличаются все жидкости.

Газообразные вещества имеет ещё более низкую теплопроводность. Доказать утверждение можно опытным путём:

Конвекция опыт

  1. В штативе закрепляют пробирку, в которой находится воздух.
  2. Под ней ставят зажженную спиртовку.

Если в пробирку опустить палец, то тепло ощущаться не будет. Эксперимент позволяет сделать вывод, что воздух, как и прочие газы, плохо передаёт внутреннюю энергию.

Наилучшими проводниками теплоты считаются металлические тела, а к наихудшим относятся сильно разреженные газы. Причиной этого является их молекулярное строение. Частицы газообразных веществ расположены на больших расстояниях друг от друга, а потому сталкиваются редко, из-за чего передача теплоты происходит значительно медленнее, чем в твёрдых телах. Жидкости по уровню теплопроводности находятся между газами и твёрдыми объектами.

Описание конвекции

Конвекция является ещё одним способом передачи теплоты. Её сущность заключается в переносе внутренней энергии слоями жидких или газообразных веществ.

Поскольку конвекция происходит только при перемещении веществ, осуществляться такой процесс может лишь в жидкостях и газах. Известно, что физические тела в этих двух состояниях плохо проводят тепло, но благодаря концекции их всё же можно нагреть. Эффективное применение этого процесса можно наблюдать в холодное время года, когда в помещениях, оборудованных батареями парового отопления, воздух согревается. Этот тип теплопередачи можно наблюдать при проведении простого опыта:

Конвекция это

  1. На дно наполненной водой колбы аккуратно опускают кристалл марганцовокислого калия.
  2. Ёмкость нагревают в том месте, где лежит соль марганцовой кислоты.
  3. Через некоторое время со дна начинают подниматься окрашенные струи воды.
  4. Поднявшись в верхние слои, струи опускаются.

Нижний слой жидкости при нагреве расширяется, что приводит к увеличению её объёма и уменьшению плотности. Под воздействием архимедовой силы нагретая часть вещества перемещается выше. На освободившееся место опускается холодная жидкость, которая по мере нагревания поднимается. В этом случае внутренняя энергия передаётся движущимися вверх потоками воды.

Подобным образом происходит передача теплоты и в газах. Так, если бумажную вертушку размещают над источником тепла, то она начинает вращаться. Лопасти объекта приходят в движение потому, что наименее плотные слои нагретого воздуха поднимаются из-за воздействия на них выталкивающей силы, в то же время холодные слои опускаются, занимая место тёплых. Это передвижение воздуха заставляет вертушку вращаться.

Определение излучения

Последним видом теплопередачи является излучение. Его можно почувствовать, поднеся руку к включенной электрической лампочке, батарее отопления, спирали нагретой электроплиты, горячему утюгу и т. д. Опытным путём выявить излучение можно следующим образом:

Формула теплопередачи

  1. Металлический теплоприёмник, имеющий блестящие и чёрные поверхности, закрепляют в штативе.
  2. К нему присоединяют манометр.
  3. В сосуд, одна сторона которого окрашена в белый цвет, а другая — в чёрный, наливают кипяток.
  4. Ёмкость с водой поворачивают к чёрной поверхности теплоприёмника сначала белой, а затем чёрной стороной.
  5. В обоих случаях уровень воды в колене манометра понижается.
  6. Но следует обратить внимание, что когда к теплоприёмнику обращена чёрная сторона сосуда, жидкости в колене меньше.

Изменение уровня воды в манометре объясняется тем, что воздух, находящийся в теплоприёмнике, начинает расширяться. Но расширение газа возможно только при нагревании, значит, вещество получило от ёмкости с кипятком энергию. Известно, что у воздуха плохая теплопроводность, а конвекции в этой ситуации нет, поскольку сосуд расположен на одном уровне с теплоприёмником, следовательно, ёмкость излучает тепловую энергию.

Излучение теплопередачи

Кроме того, опыт свидетельствует, что от тёмной стороны сосуда исходит больший потенциал, чем от белой. Это подтверждает разный уровень жидкости в манометре.

Чёрная поверхность не только отдаёт большое количество энергии, но и принимает её больше. Экспериментальным доказательством этого утверждения может служить включенная электрическая плита, к которой сначала подносят светлую сторону теплоприёмника с присоединённым к нему манометром, а затем тёмную. Во втором случае уровень жидкости в измерительном приборе будет ниже, чем в первом.

Приведённые опыты подтверждают тот факт, что чёрные тела поглощают и испускают энергию значительно лучше, чем белые. А светлые, в свою очередь, плохо излучают и поглощают её, но хорошо отражают. Именно поэтому в летнее время люди предпочитают светлую одежду, а дома, расположенные в тёплых странах, часто красят в белый цвет.

В природе основным примером теплопередачи в виде излучения можно считать энергию, передаваемую Земле Солнцем. Так как пространство между звездой и планетой заполнено космическим вакуумом, то энергетический потенциал не может быть передан ни посредством конвекции, ни путём теплопроводности. Это значит, что такой вид теплопередачи не зависит от какой-либо среды, излучение обладает способностью свободно проходить даже через вакуум.

Закон охлаждения Ньютона и коэффициенты

Чаще всего жидкости и газы нагреваются или охлаждаются, соприкасаясь с поверхностью различных твердых объектов. Такой процесс обмена теплом называют теплоотдачей, а поверхность, переносящая тепло, получила наименование «поверхность теплообмена» или «теплоотдающая».

Рассчитать скорость теплоотдачи можно с помощью эмпирического уравнения теплоотдачи, основанного на законе охлаждения Ньютона. Если процесс установился, то уравнение выглядит следующим образом: Q = α*F*(tж — tст)*τ, где:

Закон охлаждения ньютона формула

  • Q — поток тепла;
  • α — коэффициент теплоотдачи, показывающий, сколько теплоты получает или отдаёт теплоноситель 1 м² в некий отрезок времени, если температурная разница между составляющими равна 1 °C (эта величина даёт характеристику скорости передвижения тепла в теплоносителе, она зависит от режима перемещения, физических свойств теплоносителя, геометрии каналов, состояния поверхности, отдающей энергию);
  • F — теплоотдающая поверхность;
  • tж — температура вещества;
  • tст — температура стенки;
  • τ — время.

При рассмотрении процесса теплопередачи в твёрдой стенке обязательным условием является разница между температурами поверхностей. Она образует тепловой поток, который направлен от плоскости с наиболее высокой температурой к поверхности с меньшим подобным показателем. Если процесс установился, то закон Фурье принимает вид: Q = λ*F*(t'ст — t''ст)/δ, где:

Закон Фурье

  • Q — тепловой поток;
  • λ — коэффициент теплопроводности, показывающий, сколько тепла проходит за временную единицу через некий отрезок теплоотдающей поверхности, если температура опускается на 1 °C на единицу длины нормали по отношению к изотермической поверхности (это физическая характеристика, которая определяет способность вещества к теплопроводности, зависящая от его природы, структуры и иных показателей);
  • F — поверхность стенки;
  • t’ст — t''ст — температурная разница между поверхностями стенки;
  • δ — толщина стенки.

Зачастую для решения задач по физике необходимо сделать расчёт теплопередачи по формулам, подходящим для различных видов процесса. Такая разница объясняется разными физическими характеристиками веществ, а также особенностями методов передачи теплоты.