Вращательное движение твердого тела – движение, при котором все точки объекта описывают траекторию в виде окружности. 

Распространенный случай в физике – вокруг покоящейся оси (рис. 1).

Вращательное движение твердого тела

Рис. 1 Вращение твердого тела вокруг оси

Линия, соединяющая неподвижные точки, читается осью вращения. Кинематика перемещения в целом аналогична поступательной. Только путь измеряется не в метрах, а в радианах или градусах. 

Последние связаны между собой следующей формулой:

701

где:

  • ϕ – угол в радианах (рад);

  • γ – угол в градусах (°).

Закон и уравнение вращательного движения твердого тела

Законы движения также схожи. Для равноускоренного движения:

702

где:

  • ϕ0 – начальный угол (рад);

  • ω0 – начальная угловая скорость (рад/с);

  • t – время (с);

  • ε – угловое ускорение (рад/с2).

Под положительным понимают перемещение против часовой стрелки.

Угловая скорость

В обычной жизни вращение оценивается в оборотах за единицу времени. За минуту чаще всего. Для расчетов такие характеристики неудобны. Поэтому определяется так:

703

Скорость в оборотах ν легко связать с угловой:

704

где:

ν – скорость в оборотах (1/с).

Используется еще одна важная величина – период вращения T. За это время предмет совершает полный поворот:

705

Угловое ускорение

Это величина:

706

В уравнении движения был показан частный случай равноускоренного перемещения. Но это не всегда так. Также ε может принимать отрицательные значения в случае замедления.

Линейные величины

При малых величинах пройденный путь (см. рис. 2) будет равен:

707

где r – расстояние до центра вращения (м).

708

Рис. 2 Перемещение

Откуда следует линейная скорость:

709

Вектор, перпендикулярный отрезку, r. То есть расположенный на касательной к окружности вращения.

И, соответственно, ускорение:

710

Кроме того, передвижение по кривой линии невозможно без центростремительного ускорения:

711

Возвратно-вращательное движение

Общий случай раскачивания маятника. Анализ подобных противоположных телодвижений пары объектов порождает некоторые парадоксы.

Возникают странные и дико звучащие названия вроде «безопорного движителя». Выводы в конечном итоге противоречат законам механики Ньютона.

Приверженцы таких рассуждений существуют и доводы имеют право на жизнь. Не все общепринятые взгляды безупречны. Евклидова геометрия тому пример. Теория довольно запутана, и здесь мы ее рассматривать не будем.

С учетом масс

Представив себе, что тело состоит из незначительных масс mi, получим любопытные результаты. Кинетическая энергия выразится так:

712

Джоуль (Дж) – единица энергии и работы в системе СИ.

Моментом инерции относительно выбранной оси называется:

714

или в соответствующей интегральной форме.

Тогда энергия выразится следующим образом:

715

То есть имеется некий аналог массы. Но последняя является неизменной присущей объекту величиной. Момент же инерции зависит от местонахождения оси.

В реальных условиях распространен случай вращения вокруг оси, включающей центр масс. Найдем его для системы, указанной на рис. 3.

716

Рис. 3 Определение центра масс.

Определится по формулам:

717

Вектор, направленный из начала координат в центр масс, в общем случае выразится следующим образом:

718

Можно перевести в интегральную форму. В присутствии гравитации – заодно и центр тяжести.

Можно сказать, что общее движение предмета включает поступательное и вращательное. Пример – качение чего-то округлого (рис. 4). При этом все перемещение точек можно исчерпывающе изобразить на рисунке. В таком варианте движение называется плоским. 

Полная кинетическая энергия равна:

719

где:

  • m – масса объекта;

  • IC – момент инерции относительно оси, включающей центр масс.

720

Рис. 4 Качение колеса

 

Частные случаи вращательного движения

Рассмотрим несколько:

1. Равномерное (рис. 5), с постоянной скоростью, с нулевым ускорением. 

Выражается уравнением: φ = φ0 + ωt

721

Рис. 5 При ε = 0.

2. Равноускоренное. Рассмотрено ранее. Но все же уместны некоторые пояснения (рис. 6).

722

Рис. 6 ε = const.

3. Вокруг неподвижной оси. Наиболее распространенный в рассмотрении вариант. Как для реальных нужд, так и в теории.

4. Возвратно-вращательное. В математическом выражении напоминает колебания. При подробном рассмотрении вызывает неудобные вопросы.


Заключение

Для разработчиков оборудования тема отнюдь не праздная. Рассматриваются задачи по передаче силового момента (в частности в ременных механизмах). Разбирается механика работы подшипников, гироскопов.

В артиллерии снаряды стабилизируются вращением. Да и расчеты их на прочность связаны со сложным напряженным состоянием в связи с раскручиванием в стволе.

Орбиты планет имеют отношение к рассматриваемой кинематике.

На самом деле все сферы использования данной темы невозможно перечислить, это действительно нужный раздел.