Число рейнольдса физический смысл

Опыты Рейнольдса

Рейнольдс проводил эксперименты на установке, представлявшей собой бак с водой, к которому в нижней части была присоединена выходная стеклянная трубка с краном на конце. Бак постоянно наполнялся водой, а расход воды мерился при помощи мерного бачка и секундомера. Над баком находился сосуд с краской, которая попадала в воду по тонкой трубочке с краном.

Число рейнольдса

  1. Первый опыт. Немного приоткрывался кран на выходе из бака и в трубке начиналось движение воды при небольшой скорости. При добавлении краски в выходной трубке появлялась резко очерченная цветная струйка, которая не смешивалась с остальной водой. Фиксировался ламинарный режим течения.
  2. Второй опыт. При дальнейшем открывании крана и увеличении скорости потока струйка краски начинала изгибаться, превращалась в отдельные вихри и перемешивалась с остальной водой. Ламинарный режим переходил в турбулентный.

Рейнольдс доказал, что при значении числа Re 2000—3000 поток становится турбулентным, а при Re меньше нескольких сотен — поток полностью ламинарный.

Режимы течения жидкости

Опыты, проводившиеся Рейнольдсом, подтвердили наличие двух режимов течения жидкости — турбулентного и ламинарного. Учёный сформулировал общие условия существования режимов и переходного состояния между ними. Разные жидкости при протекании по трубам, обтекании преград или растекании по поверхности демонстрируют различные свойства. Густая липкая жидкость, например, клей, обладает большей вязкостью, чем лёгкая и подвижная вода. Степень вязкости определяется коэффициентом динамической вязкости η («эта»). Для ламинарного потока свойственны следующие признаки:

Число рейнольдса формула

  1. Отсутствует смешивание отдельных слоёв.
  2. Слои, расположенные ближе к оси трубы, перемещаются быстрее, чем находящиеся у стенок. Этот объясняется силами трения, возникающими между молекулами жидкости и внутренней поверхностью трубы.

Турбулентное течение — хаотический поток, каждая молекула которого двигается произвольно по непредсказуемой траектории. При этом в потоке образуются завихрения. Но, несмотря на хаотичность перемещения частиц, общий гидравлический поток имеет направление и скорость, которая оценивается по средним значениям. В большей части поперечного сечения скорость только немного меньше максимальной, но вблизи стенок она резко падает.

Рейнольдс провёл значительное количество опытов с разными жидкостями для определения числа, безразмерная величина которого описывает характер гидравлического потока. Это число имеет обозначение Re. Экспериментально было установлено, что при превышении числом Рейнольдса критической величины наблюдается переход движения жидкости, текущей в трубе, из ламинарного режима в турбулентный.

Число Рейнольдса характеризует режим движения и даёт правильные значения при расчёте для напорных потоков. В потоках без напора переходный период увеличивается, и использование Re в качестве критерия не всегда подходит. Например, в водохранилищах значения велики, но там происходит ламинарное течение.

Скорость среды

Скорость, при которой изменяется режим потока — критическая. Существует 2 вида: одна соответствует переходу от ламинарного течения к турбулентному и другая, соответствующая обратному переходу от турбулентного к ламинарному. Между этими значениями может наблюдаться как один, так и другой режим. Этот период определяется как переходный. Для случая движения жидкости в трубопроводе Рейнольдс назвал следующие параметры, от которых зависит режим гидравлического потока:

Критическое число рейнольдса

  • диаметр трубопровода — d;
  • средняя скорость течения — V;
  • плотность жидкости — ρ;
  • динамическая вязкость жидкости — η.

При этом лёгкость осуществления турбулентного режима прямо пропорциональна поперечному сечению трубы и плотности и обратно пропорциональна вязкости. Формула числа Рейнольдса:

Re = V d ρ / η;

Подставляя в эту формулу соответствующие параметры скорости среды, её плотности, вязкости и размеры трубы, можно произвести расчёт значения числа Re и определить режим потока. Число Re не имеет размерности. Это становится понятно, если подставить в формулу все параметры со своими единицами измерения. В результате сокращения получается безразмерное число. Для гидравлического потока в прямой круглой трубе с гладкими стенками критическое значение Re в норме равно 2100—2300. Анализ показывает, что критическое значение числа Re возрастает в сужающихся трубопроводах и снижается в расширяющихся.

Что характеризует число рейнольдса

При расчётах обычно принимают только одно критическое значение числа Re. Предполагается, что Re < 2300 соответствует ламинарному режиму, а Re > 2300 — турбулентному. Течение жидкости в переходной зоне не рассматривается. Это обеспечивает некоторый запас и увеличивает надёжность расчётов. Для газов Re критическое достигается при значительно больших скоростях течения, чем у жидкостей, так как у них намного больше кинематическая вязкость (ν = η / ρ).

Турбулентное движение наблюдается чаще, чем ламинарное. Скорости при хаотичном движении более равномерно распределены по сечению потока. Это происходит в связи с перемешиванием молекул с разными скоростями и уравниванием средней скорости по всему поперечному сечению. Ламинарные потоки наблюдается при движении вязких жидкостей по трубам, в течении грунтовых вод и крови в живых организмах.

Значение числа Re

Жидкость в гидравлическом потоке имеет инерцию и пытается поддерживать имеющуюся скорость. При большой вязкости среды внутреннее трение между слоями оказывает значительное сопротивление. Число Re зависит от соотношения между силами инерции и трения. Большие значения Re соответствуют случаю, когда сопротивление трения мало и не может загасить турбулентность. Малые величины Re относятся к обстоятельствам, когда трение уменьшает турбулентность и превращает гидравлический поток в ламинарный.

Физический смысл числа Рейнольдса — отношение сил инерции потока к силам вязкости. Можно говорить, что это соотношение выражает зависимость между кинетической энергией потока и тепловыми потерями энергии на трение при аналогичной длине.

Формула число Рейнольдса

Число Рейнольдса используется при моделировании потоков в различных газах и жидкостях, так как режим течения зависит только от соотношения физических величин: плотности, вязкости, скорости и размеров элемента, которое выражается числом Re, поэтому можно использовать для эксперимента в аэродинамической трубе уменьшенный прототип летательного аппарата и выбрать скорость потока воздуха так, чтобы число Рейнольдса соответствовало реальному для аппарата в полёте. Сейчас нет необходимости в использовании аэродинамической трубы. Все воздушные потоки можно моделировать с помощью компьютера.

Рейнольдс внёс большой вклад в гидравлику, гидродинамику и механику. Он представил дифференциальные уравнения осреднённого движения жидкости, учитывающие турбулентные напряжения, создал труды по теории смазки, определил критерий подобия двух различных течений, исследовал явления кавитации на примере винтовой лопасти, модернизировал устройство центробежных насосов. В 1888 году он был награждён медалью Лондонского королевского общества.