Как формула ускорения зависит от скорости движения тела

Определение и свойства

Любое изменение скорости тела приводит к ускорению (ᾱ) как в сторону увеличения, что обычно подразумевается, так и снижения, то есть замедления. Также этот термин может означать смену направления (центростремительность). Это связано с прямой зависимостью сил, которые действуют на объект, от изменения скорости (v), являющейся величиной векторной и имеющей направление. Так ускоряться будут:

Падающее яблоко

  • падающее яблоко;
  • автомобиль, останавливающийся на светофоре;
  • вращающаяся планета и т. п.

Например, транспортное средство начинает движение с места и продолжает ехать, увеличивая v, — это ᾱ линейное (или тангенциальное). Пассажиры внутри машины будут ощущать его как силу, которая прижимает их к спинкам сидений. Если автомобиль поворачивает, то есть меняет направление, то это уже ᾱ радиальное. Люди в салоне будут наклоняться в сторону, противоположную движению.

Когда водитель решит остановиться, это тоже будет ускорением, но только в противоположном направлении v движения авто. В космосе такое ᾱ называют ретроградным горением или замедлением. Пассажиры будут чувствовать, будто что-то их толкает вперёд. Принято различать два вида ᾱ:

  1. Среднее. Определяется как изменение скорости (∆v) за какой-либо промежуток времени (∆t). Математическое уравнение выглядит следующим образом: ᾱ = ∆v / ∆t.
  2. Мгновенное. Это предел предыдущего ускорения за интервал t, называемый бесконечно малым. Формула будет такая: ᾱ = lim ∆t → 0 * ∆v / ∆t = dv / dt.

Например, мотоцикл набирает скорость 50 м/с за 10 с, его среднее ᾱ = 50 / 10 = 5 м/с².

Другие формы

Можно взять материальный предмет, например, спутник, который вращается вокруг Земли. Он двигается по окружности и ускоряется, причина этого — изменение направления траектории движения. При этом его скоростной режим может не изменяться. В этом случае речь идёт о центростремительном (направленном к центру) ᾱ.

Ускорение тела относительно состояния свободного падения (ᾱ правильное) измеряется акселерометром. В механике для предмета с постоянной массой (m) ᾱ центра m тела пропорционально действующему на него вектору силы (суммы всех сил). Здесь действует второй закон Ньютона: F = m * ᾱ → ᾱ = F / m.

Ускорение тела

Скорость частицы, которая движется по криволинейной траектории, можно записать как функцию времени v(t) = v(t) * v(t) / v(t) = v(t) * ut(t), где единичный вектор касательной (ut) к траектории равен v(t) / v(t) и указывает направление движения в конкретный момент времени. Это и есть формула центростремительного ускорения, которое создаётся при круговом движении. Можно использовать цепное правило дифференцирования, чтобы записать формулу для произведения двух функций, если принять во внимание, что ᾱ частицы происходит по некой кривой проекции. Последовательность действий уравнения следующая:

  1. ᾱ = dv / dt;
  2. = dv / dt + v(t) * dut / dt;
  3. = dv / dt * ut + v² / r * un.

В уравнении un — единичный вектор нормали, r — мгновенный радиус кривизны, который основывается на колеблющемся круге в момент времени t. Все эти компоненты являются тангенциальным, радиальным или нормальным ускорением, формула которого может быть представлена в виде функции.

Особые случаи

Уравнение ускорения тела

Если при движении v изменяется на равную величину, то есть объект равноускоренный в каждый одинаковый период времени, то это можно охарактеризовать как равномерное или постоянное ускорение. Пример этого в физике — формула ускорения свободного падения тела, вид которой при отсутствии сопротивления будет зависеть от гравитационного поля и силы стандартной гравитации (g).

Чтобы составить уравнение, придётся проделать небольшой путь от самых основ. Второй закон Ньютона гласит, что Fg = mg. В кинематике есть формулы, которые связывают смещение (sₒ), начальную (vₒ) и зависящую от времени v(t) скорость и ускорение с прошедшим временем (t):

  • s(t) = sₒ + vₒt + 1/2ᾱt² = sₒ + (vₒ + v(t)/2 * t;
  • v(t) = vₒ² + ᾱt;
  • v²(t) = vₒ² + 2ᾱ * [s(t) - sₒ].

Наглядно расчёт разности можно увидеть, если начертить график.

Частица будет испытывать ускорение, которое возникает в результате изменения направления вектора скорости, тогда как её величина остаётся постоянной при равномерном круговом движении. Производная от расположения точки на кривой по времени, то есть её v, оказывается всегда точно касательной к линии, соответствующей ортогональному радиусу в этой точке.

Это ускорение постоянно меняет направление скорости, которая будет касаться соседней точки, тем самым заставляя вектор скорости совершать вращательные движения по кругу. Формула будет выглядеть следующим образом: ᾱс = v² / r. Надо помнить, что v здесь — произведение угловой скорости ω на r.

Единица измерения

Ускорение рассчитывается путём деления метров в секунду (м/с) на секунды (с). Деление расстояния по времени вдвое равно делению расстояния на квадрат времени. Таким образом, единицей ускорения СИ является метр в секунду в квадрате (м/с²). Чтобы было весело изучать физику, можно рассмотреть несколько интересных примеров в таблице.

 ускорение зависит от скорости движения тела

ᾱ ( м/с²) Событие
0,5 гидравлический лифт
0,63 ускорение свободного падения (УСП) на Плутоне
1 лифт на кабеле
1,6 ускорение свободного падения на Луне
8,8 Международная космическая станция
10—40 механический прямолинейный старт пилотируемой ракеты
20 космический челнок
9,8 УСП на Земле
20—50 американские горки
80 предел устойчивой человеческой терпимости
0—150 тренировочная центрифуга
600 автоматические подушки безопасности
1 млн пуля в стволе пистолета
24,8 УСП на Юпитере

Другая часто используемая единица — ускорение силы тяжести g. Поскольку все знакомы с влиянием гравитации на физические объекты, это делает их удобным стандартом для сравнения ускорений. Все чувствуют себя нормально при 1 g, вдвое тяжелее при 2 g и невесомо при 0 g. Эта единица измерения имеет значение 9,80665 м/с², но для повседневного использования достаточно 9,8 м/с², а 10 м/с² удобно для быстрых подсчётов.

Действие на людей

Хотя термин «сила g» часто используется, g — мера ускорения, а не силы. Особую обеспокоенность у людей вызывают физиологические эффекты этого явления. Чтобы понять смысл, лучше обратиться к примерам:

Американские горки

Космический модуль

Центрифуга для космонавтов

  1. Все знают аттракцион «Американские горки». Скорость там очень важна. Если бы она была единственной целью проектировщиков острых ощущений, то автострада оказалась бы довольно захватывающей. Однако всё очень скромно, многие горки редко превышают скоростной режим, равный 30 м/с (примерно 97 км/ч). Вопреки распространённому мнению, именно ускорение делает поездку интересной. Тщательно разработанные горки позволят пассажирам на короткое время максимально ускориться (как равноускориться, так и равнозамедлиться) от 3 до 4 g — это то, что даёт поездке ощущение опасности.
  2. Несмотря на огромную мощность своих двигателей, разгон космического модуля удерживается ниже 3 g, поскольку всё, что больше, создаёт ненужную нагрузку на космонавтов и сам корабль. Оказавшись на орбите, вся система вступает в длительный период свободного падения, что даёт ощущение невесомости. Такое чувство также может быть смоделировано внутри специально пилотируемого самолёта или башни свободного падения.
  3. Пилоты истребителей могут испытывать ускорение до 8 g в течение коротких периодов во время тактических манёвров. Если воздействие продлится более нескольких секунд, то будет достаточно 4—6 g, чтобы вызвать потерю сознания. Для предотвращения таких ситуаций лётчики-истребители носят специальную одежду, которая сжимает ноги и живот, заставляя кровь приливать к голове.
  4. Пилоты и космонавты могут также тренироваться на специальных центрифугах, способных выдавать до 15 g. Воздействие таких интенсивных ускорений является кратким из-за соображений безопасности.
  5. Ускорение травмоопасно, поэтому наиболее распространённым датчиком манекена для краш-теста является акселерометр. Чрезвычайное ускорение может привести к смерти.

По оценкам экспертов, ускорение во время аварии, в которой погибла принцесса Диана, составляло порядка 70—100 g.

Этого было достаточно, чтобы оторвать лёгочную артерию от её сердца и спровоцировать травму, которую практически невозможно пережить. Если бы Диана была пристёгнута ремнём безопасности, ускорение составило бы примерно 30 или 35 g. Это грозило несколькими переломами, но все остались бы живы.