Криволинейное движение - общая характеристика, формулы и примеры

Общие сведения
В физике даётся вполне однозначное определение движению. Под ним понимают изменение положения физической точки в пространстве по отношению с другими объектами. Считается, что любое тело состоит из совокупности точек, перемещающихся одинаково по отношению друг к другу. Поэтому любой объект принято обозначать в виде элементарной точки.
Кинематика не изучает, почему движение таково, а рассматривает только путь перемещения. С точки зрения физики, криволинейное движение — это путь, пройденный материальной точкой по кривой траектории. Если же траектория прямая, то изменение положения называется прямолинейным.
Криволинейное движение — это всегда ускоренное перемещение. Оно может быть:
- Равномерным. В этом случае скорость перемещения по модулю остаётся постоянной на всём прошедшем расстоянии. Например, движение по окружности.
- Равноускоренным. Признаком такого движения является изменение скорости и направления. Например, брошенное тело под углом.

Основной характеристикой понятия является вектор перемещения. Обозначается он латинской буквой S со стрелочкой вверху. Направлен он всегда по хорде. Кроме вектора, передвижение по кривой линии определяется тангенциальным и нормальным ускорением.
В первом случае характеристика обозначает изменение величины скорости в единицу времени: at = lim Δv / Δt, где: v — начальная скорость в момент времени t0 + Δt. Тангенциальное ускорение может как совпадать по направлению со скоростью, так и быть ей противоположной.
Нормальным ускорением называют характеристику, перпендикулярную направлению скорости: an = V2 / r, где: r — радиус окружности. Оно всегда совпадает с радиусом кривизны пути. Подвидом такого ускорения является центростремительная сила. Проявляется она при равномерном перемещении по окружности.
Таким образом, если движение является криволинейным, то вектора скорости и ускорения не лежат на одной прямой. Из простых примеров криволинейного движения можно выделить: течение воды в реке, перелёт на самолёте, катание на колесе обозрения.
Центростремительное ускорение

Если движение равномерное, но происходит оно по кривой, всё равно будет фиксироваться ускорение точки. Это происходит из-за того, что ускорение определяется как изменение скорости к промежутку времени. Поэтому если точка движется равномерно, то это значит, что модуль скорости остаётся одинаковым, но направление вектора изменяется. То есть будет справедливо записать: v = v0, но v ≠ v0. Можно сделать вывод, что изменение скорости существует, если Δv ≠ 0, при этом ускорение тоже не равно нулю: a ≠ 0.
Рассмотрим самый простой вид криволинейного перемещения. Существует история, что ещё во времена Аристотеля древние греки считали окружность идеальной линией. Из-за этого исторического факта астрономам приходилось объяснять движение планет, как комбинацию перемещений космических тел по окружности.
Можно представить тело, изменяющее своё положение по окружности. Траектория перемещения в декартовой системе координат будет выглядеть в виде полусферы. Пусть за её центр будет принята точка O. Тело движется равномерно. В какой-то момент времени его скорость будет V0. Её вектор направлен по касательной и совпадает по направлению с перемещением тела. Через некоторое время объект переместится в другую точку. Его скорость по-прежнему останется направленной по касательной, при этом модуль не изменится. То есть V = V0, но вектора их неравны: V ≠ V0.

Пусть стоит задача — найти равномерное движение по окружности. Иными словами, определить направление вектора и вычислить его модуль. В первую очередь необходимо узнать, куда же направлен вектор ускорения. Чтобы ответить на этот вопрос, нужно опираться на исходную формулу: a = Δv / Δt. Отсюда можно сделать вывод, что куда будет направлен вектор V, туда будет направлено и ускорение a.
Для наглядности можно построить вектор изменения скорости частицы, движущейся по рассматриваемой траектории. Чтобы построить график, описывающий ситуацию, нужно перенести V0 параллельно вектору V к его началу. Соединив два свободных конца перпендикуляром, получится треугольник. По правилу вычитания векторов можно получить вектор изменения скорости: Δv = V — V0. Направлен он будет сверху вниз.
Так как V0 направлен по касательной перпендикулярно радиусу, при этом угол треугольника при основании стремится к нулю, можно утверждать, что Δv перпендикулярен V. Значит, и вектор ускорения перпендикулярен V. Отсюда следует, что вектор ускорения направлен к центру окружности, поэтому его и называют центростремительным ускорением.
Движение по произвольной кривой

Рассмотрим простейший случай равномерного перемещения. Можно представить ситуацию, что если руль автомобиля держать неподвижно, то он будет ехать по прямой или по окружности. В реальной ситуации при езде всё время приходится поворачивать руль автомобиля, то есть в каждый момент времени происходит перемещение по окружности. При этом с каждым поворотом колеса управления радиус окружности изменяется. В данный момент времени он всегда совпадает с траекторией движения и называется радиусом кривизны траектории.
На графике движения можно отметить несколько точек. В одной из них скорость будет равняться V1. Немного дальше пройденное расстояние изменится, но скорость останется той же. Поменяется и направление V2. Через определённое время скорость будет равняться V3. Это движение равномерное.
Относительно точки V1 можно построить касающуюся её окружность с центром r1. По аналогии движения за рулём, это то же самое, что в рассматриваемой точке зафиксировать поворот управления на постоянный угол. Для V2 центр радиуса находится в точке r2, а V3 в r3.
В любом из этих трёх случаев происходит движение по окружности. То есть криволинейное движение произвольной формы — это перемещение по окружности любого радиуса. Если же радиус изменяется, то в любой момент меняется и центростремительное ускорение. Но при этом направление всегда совпадает с радиусом. Самое большое ускорение будет в том месте, где радиус самый маленький, и наоборот. Таким образом можно утверждать, что всякий раз ускорение будет перпендикулярно скорости при равномерном движении.
Кроме центростремительного ускорения, важными характеристиками, описывающими движение, являются следующие величины:
- Период. Показывает, за сколько времени точка совершит один оборот: T = t /n. Где t — время, за которое происходит определённое число оборотов, равное n.
- Частота. Определяет, сколько оборотов совершенно за единицу времени: λ = n / t.
- Угловая скорость. Является отношением угла поворота радиуса ко времени, за который произошёл поворот: W = φ / Δt = 2 * p / T = V / r.
Это основные формулы для криволинейного движения, использующиеся при решении задач. Кроме того, в заданиях используется связь между линейной и угловой скоростями: v = w * r, а также формула полного ускорения: a = at + an.
Решение простых задач
Виды движения изучаются на уроках физики в седьмом классе средней школы. На них ученикам объясняют понятия поступательного и равномерного движения, даются необходимые уравнения. Решение задач на уроках необходимо для закрепления пройденного материала и реального понимания ситуаций, при которых используются знания о видах перемещения.
Вот некоторые типы заданий, часто встречающиеся в различных вариантах у учащихся при сдаче ими тестов или написании контрольных работ:

- Линейная скорость точек рабочей поверхности наждачного круга диаметром 300 мм не должна превышать 35 метров в секунду. Допустима ли посадка круга на вал электродвигателя, совершающего обращение со скоростью 1400 оборотов в минуту? Согласно условию, необходимо найти, как связаны между собой V1 c Vmax. То есть линейную скорость и частоту вращения. Для расчёта необходимо использовать формулу связи скоростей: v = w * r. Так как поверхность абразива плоская, то радиус его будет равняться: r = d / 2. Подставив все исходные данные, можно записать: v = 2 * p * n / 2 = p * n * d = 3,14 * 1400 * 1/60с * 0,3 м = 22 м/с. Следовательно, из полученного значения можно сделать вывод, что посадка допустима.
- Какова линейная скорость точек земной поверхности на широте 46,50 при суточном вращении? Радиус Земли принять равным 6400 км. Другими словами, нужно выяснить линейную скорость. Широта рассчитывается вдоль меридиана и, по сути, это угол, измеряемый между двумя точками. Одна из них находится на экваторе, а другая — в указанном месте. Между радиусами, проведёнными из этих точек, угол составляет φ. Решить поставленную задачу можно, используя формулы: v = w * r и w = 2 * p / T. Следует учесть, что радиус, соответствующий 46,50, будет меньше радиуса Земли. Для того чтобы найти нужное значение, необходимо построить виртуальный треугольник и, используя тригонометрические формулы, записать, что cos φ = r / R. Учитывая, что направлена мгновенная скорость при криволинейном движении к центру, формула будет иметь вид: V = (2 * p / T) * R * cos φ = (6,28 * 6400 * 103 * cos 46,50) / 24 * 3,600 c = 465 * 0,69 м/с = 320 м/с.
Таким образом решать задачи на нахождение различных параметров при криволинейном движении без учёта его вызвавшей причины несложно. При этом следует правильно определить тип движения и знать основные формулы.
Пример сложного уровня
В большей мере такого уровня задачи являются поучительными, так как они используются для реальных случаев. Например, при расчётах работы различных технических установок. Вот одна из них.
Пусть движение от шкива один к шкиву четыре передаётся при помощи двух временных передач. Найти частоту вращения в оборотах в минуту и угловую скорость шкива четыре, если шкив один делает 1200 об/мин, а радиусы шкивов: R1 — 8 см, R2 — 32 см, R3 — 11 см, R4 — 55 см, при этом они жёстко укреплены на одном валу. Передающие ремни принять идеальными.

Для решения этой задачи нужно вначале определить направление вращения. Из условия задачи следует, что первый шкив будет вращаться в другую сторону по сравнению с остальными тремя. Для того чтобы найти угловую скорость последнего ролика, нужно будет последовательно определить параметры предшествующих ему шкивов.
Линейная скорость точек движения на ролике первого и второго шкива одинакова. Это следует из того, что ремни идеальные, не проскакивают и не растягиваются. Таким образом будет справедливо записать: V1 = V2. Так как w1 * r1 = w2 * r2, можно составить отношение: r1 / r2 = w1 / w2 или r1 / r2 = 2 * p * n2 / 2 * p * n1. То есть отношение примет вид: r1 / r2 = n2 / n1.
Так как третий шкив закреплён жёстко на валу со вторым, то образованную систему можно считать одним твёрдым телом. Применительно к нему можно говорить об общей угловой скорости или одинаковой частоте вращения. Получается, что n3 = n2. Тогда можно записать: n3 = n1 = r1 / r2.

На следующем шаге необходимо определить линейную скорость на четвёртом ролике. Из условия известно, что V3 = V4, так как их соединение идеальное. Это значит, что можно связать скорости третьего и четвёртого шкива с частотами: V4 = 2 *p * n4 * r4; V3 = 2 * p * n3. Из полученного равенства нужно выразить n4. Оно будет равняться: n4 = n3 * r3 / r4. В эту формулу необходимо подставить n3 и получить итоговую формулу: n4 = n1 * (r1 * r3) / (r2 * r4).
Теперь нужно подставить исходные данные и выполнить расчёт. При этом переходить в систему СИ нет необходимости: n1 = 1200 об/мин * (8 * 11) / (32 * 55) = 1200 * 1 / 20 об/мин = 60 об/мин. Для того чтобы найти угловую скорость, частоту необходимо умножить на 2p. При этом учесть, что угловая скорость измеряется в радианах в секунду. Поэтому w4 = 2 * p * n4 = 6, 28 * 1 = 6,28 рад/сек. Интересной особенностью является то, что частота вращения первого шкива в двадцать раз больше четвёртого. Задача решена.
Еще тесты
- Анатомия
- Английский язык
- Астрономия
- Биология
- Литература
- История
- Педсовет
- Естествознание
- Финансы и кредит
- Правоведение
- Товароведение
- Экономика
- Социология
- Маркетинг
- Обществознание
- Культурология
- Математика
- Философия
- Русский язык
- Психология
- Политология
- Делопроизводство
- Бухгалтерия
- ОБЖ
- Орфография
- География
- Биографии
- Физика
- Пунктуация
- Краткие содержания
- Химия
- Менеджмент
- Тест на тему Тест по теме Дыхательная система человека 7 вопросов
- Тест на тему Строение человека - анатомия внутренних органов 7 вопросов
- Тест на тему Гормоны - определение, виды, функции, роль в организме человека 5 вопросов
- Тест на тему Лейкоциты в крови - строение, где образуются и разрушаются, норма содержания 5 вопросов
- Тест на тему Одноклеточные организмы - строение , формы и признаки представителей 8 вопросов
- Тест на тему Бесполое размножение - виды, формы и биологическое значение процесса 9 вопросов
- Тест на тему Синтез АТФ - структура, функции и пути образования аденозинтрифосфорной кислоты 7 вопросов
- Тест на тему Биогеоценоз - определение, структура и свойства 5 вопросов
- Тест на тему Символизм в литературе - основные черты и представители направления 6 вопросов
- Тест на тему "У Лукоморья дуб зеленый" - анализ стихотворения Александра Сергеевича Пушкина 8 вопросов
- Тест на тему Родион Раскольников и Соня Мармеладова - история взаимоотношений в романе Ф. М. Достоевского "Преступление и наказание" 6 вопросов
- Тест на тему Семья Мелеховых в романе М. Шолохова "Тихий дон" 7 вопросов
- Тест на тему Отечественная война 1812 года - причины, основные сражения, итоги 7 вопросов
- Тест на тему Правление Ивана Грозного - внутренняя и внешняя политика 7 вопросов
- Тест на тему Образование СССР - причины, этапы становления, состав, итоги 6 вопросов
- Тест на тему Крещение руси князем Владимиром - причины, история, значение принятия христианства 6 вопросов
- Тест на тему Пищевая цепочка в природе - звенья, схемы и примеры цепей 5 вопросов
- Тест на тему Экологические факторы - классификация, примеры, общие закономерности воздействия 5 вопросов
- Тест на тему Биосфера - определение, состав, свойства, границы 5 вопросов
- Тест на тему Возникновение жизни на земле 6 вопросов
- Тест на тему Права и свободы человека и гражданина 5 вопросов
- Тест на тему Унитарное предприятие - виды, признаки, участники, особенности 7 вопросов
- Тест на тему Формы собственности - типы и виды и их характеристика 7 вопросов
- Тест на тему Предпринимательское право - понятие, принципы, предмет и объект, функции 5 вопросов
- Тест на тему Ликвидность предприятия - определение, виды, формула расчета 7 вопросов
- Тест на тему Процентная ставка - понятие, виды, методы расчета и начисления 5 вопросов
- Тест на тему Финансы - определние, сущность, основные функции, виды 7 вопросов
- Тест на тему Коммерческая деятельность - сущность и содержание 7 вопросов
- Тест на тему Статистическое наблюдение - виды, способы, последовательность этапов 6 вопросов
- Тест на тему Социальный контроль - понятие и функции, формы и методы, значение 5 вопросов
- Тест на тему Анкетирование - правила составления и виды вопросов, оформление результатов 5 вопросов
- Тест на тему Социальная группа — понятие, типы, критерии выделения 8 вопросов
- Тест на тему Деятельность человека - основные виды и характеристики 7 вопросов
- Тест на тему Воздушно-десантные войска (ВДВ) - история создания, подразделения, оснащение 7 вопросов
- Тест на тему Субъекты РФ - количество, виды, правовой статус 7 вопросов
- Тест на тему Социальные нормы - понятие, виды и характеристка, функции, примеры 6 вопросов
- Тест на тему Что такое угол 5 вопросов
- Тест на тему Деление в столбик — подробное описание алгоритма решения задач, примеры 10 вопросов
- Тест на тему Вычитание дробей - правила и примеры с решениями 5 вопросов
- Тест на тему Модуль числа - свойства, действия, как решать уравнения и неравенства с модулем 10 вопросов
- Тест на тему Ислам - история возникновения религии, основные положения 7 вопросов
- Тест на тему Мышление - определение, виды, функции, свойства 5 вопросов
- Тест на тему Что такое мораль, ее категории и функции 6 вопросов
- Тест на тему Буддизм - кратко о религии (история возникновения, основные положения, священные книги) 6 вопросов
- Тест на тему Безличные предложения в русском языке 8 вопросов
- Тест на тему Ударение в словах в русском языке - правила и проверка постановки 5 вопросов
- Тест на тему Морфемный разбор слова - правила выполнения с примерами 5 вопросов
- Тест на тему Сложноподчиненные предложения в русском языке 6 вопросов
- Тест на тему Мотивация - определение, виды и типы в психологии, менеджменте 5 вопросов
- Тест на тему Интеллект - понятие, признаки, как развивать, оценка 5 вопросов
- Тест на тему Социализация личности - понятие и сущность, агенты, примеры 5 вопросов
- Тест на тему Типы темперамента и их психологическая характеристика 5 вопросов
- Тест на тему Органы исполнительной власти РФ - понятие и правовой статус, структура и фунции 7 вопросов
- Тест на тему Европейский союз - история создания, цели, состав 5 вопросов
- Тест на тему Тоталитаризм - определение, характерные черты, плюсы и минусы идеологии 5 вопросов
- Тест на тему Политическая идеология - определение понятия, функции, классификация, особенности 5 вопросов
- Тест на тему Оборотные средства предприятия, их структура, учет и анализ 7 вопросов
- Тест на тему Бюджетная классификация - определение, структура 7 вопросов
- Тест на тему Калькуляция - основные понятия, примеры расчетов себестоимости 7 вопросов
- Тест на тему Бухгалтерский учет материально-производственных запасов на предприятии 8 вопросов
- Тест на тему Пистолет Макарова - шпаргалка по тактико-техническим характеристикам 9 вопросов
- Тест на тему Чрезвычайная ситуация - понятие, типы ЧС, причины возникновения, стадии развития 7 вопросов
- Тест на тему Вооруженные силы Российской Федерации — организационная структура и предназначение 7 вопросов
- Тест на тему ВМФ (Военно-Морской флот) России - структура, история, состав 7 вопросов
- Тест на тему Перу - географическое положение, климат и достопримечательности 9 вопросов
- Тест на тему Климатические пояса Земли - характеристика и особенности 8 вопросов
- Тест на тему Тайга - географическое положение, животный и растительный мир, особенности и характеристика природной зоны 7 вопросов
- Тест на тему Озеро - определение, классификация, признаки 6 вопросов
- Тест на тему Братья Гримм - биография, жизнь и творчество немецких писателей 10 вопросов
- Тест на тему Тамерлан (1336-1405) - биография, жизнь и завоевания великого полководца 10 вопросов
- Тест на тему Максим Горький (1868-1936) - биография, кратко самое важное, интересные факты из жизни писателя 9 вопросов
- Тест на тему Блок Александр Александрович (1880-1921) - биография, жизненный и творческий путь 11 вопросов
- Тест на тему "Ночь перед Рождеством" - краткое содержание повести Н. В. Гоголя 10 вопросов
- Тест на тему "Маленький Мук" - краткое содержание сказки Вильгельма Гауфа 10 вопросов
- Тест на тему "Дворянское гнездо" - краткое содержание романа И.С. Тургенева 8 вопросов
- Тест на тему "Бирюк" - краткое содержание рассказа И.С. Тургенева 10 вопросов
- Тест на тему Серная кислота - химические и физические свойства и реакции 8 вопросов
- Тест на тему Муравьиная кислота - формула, свойства, получение и применение 7 вопросов
- Тест на тему Сложные эфиры - характеристика, классификация и примеры соединений 8 вопросов
- Тест на тему Толуол - формула, свойства и применение химического вещества 8 вопросов
- Тест на тему Оценка персонала - виды, критерии и методы 7 вопросов
- Тест на тему Управление персоналом - задачи, функции, современные подходы 5 вопросов
- Тест на тему Менеджмент предприятий — сущность, виды, задачи и цели 7 вопросов
- Тест на тему Организационная структура предприятия — типы и предназначение 7 вопросов