Определение эквивалентных функций

Эквивалентные функции - это функции, имеющие одинаковое значение. Они могут представлять собой бесконечность малых и больших величин.

Эквивалентные функции

Функция может иметь такое понятие лишь при наличии предела. Следует понимать, что одна и та же функция принимает значение малой или большой до бесконечности лишь в единственной точке.

Теорема о замене функций эквивалентными в пределе частного

Если при x1, стремящимся к x2, f(x)~f1(x) и g(x)~g1(x) существует предел:

1

то существует и предел:

 

2

Доказательство

Допустим, что следствие этой теоремы часто применяемое. Если мы имеем частное, являющееся результатом произведения функций:

3

в этом случае, при нахождении предела, можно сделать замену этих функций на эквивалентные:

4

при этом:

f(x) ~ f1(x), p(x) ~ p1(x), … , r(x) ~ r1(x), g(x) ~ g1(x), q(x) ~ q1(x), … , s(x) ~ s1(x).

Выражения равны друг другу, это значит, что при существовании одного из таких пределов, применимо существование выражения, равного первому. Соответственно, если не существует такой предел, то не может существовать и второй. 

Следует отметить, что можно делать замену как одной величины функции, так и нескольких одновременно. 

Таблица эквивалентных функций

Ниже приведена таблица равнозначных функций и формул при t → 0. В данном случае величина t может представлять собой как переменную, так и до бесконечности малую функцию t = t(x) при x → x0

5

Эквивалентность при t → 0

Равенство при t → 0

sin t ~ t

sin t = t + 0(t)

arsin t ~ t

arsin t = t + 0(t)

tg t ~ t

tg t = t + 0(t)

artg t ~ t

artg t = t + 0(t)

1-cos t ~

1-cos t =

+ 0(t2)

et – 1 ~ t

et - 1 = t + 0(t)

at – 1 ~ t ln a

at – 1 = t ln a + 0(t)

ln (1 + t) ~ t

ln (1 + t) = t + 0(t)

loga (1 + t) ~ 

12

loga (1 + t) =

14
 + 0(t)

(1 + t)b - 1 ~ bt

(1 + t)b - 1 = bt + 0(t)

sh t ~ t

sh t = t + 0(t)

arsh t ~ t

arsh t = t + 0(t)

th t ~ t

th t = t + 0(t)

arsh t ~ t

arsh t= t + 0(t)

ch t – 1 ~ t2/2

ch t – 1 ~ t2/2 + 0(t2)

Всегда ли можно сделать замену функций эквивалентными?

Свойства замены функций равносильными доступны для дробных выражений с перемножаемыми величинами и произведений, где необходимо найти предел. 

В этом случае величины в числителе или знаменателе допускается заменить равнозначными функциями. Если математическое выражение представляет собой сумму чисел, замену сделать нельзя.


Примеры решения пределов с помощью эквивалентных функций

Для сравнения рассмотрим несколько примеров.

Пример 1

Вычислить

6
 

Начнём решение, учитывая, что tg2x ~ 2x, sin3x ~ 3x при x → 0, тогда

7
 

Пример 2

Найти

8

Пусть arcsin x = t, тогда x = sin t и t → 0 при x → 0. Исходя из этого:

9

Значит, arcsin x ~ x при x → 0. 

Пример 3

Вычислить

10

Решение: если sin (15x) ~ 15x, tg (10x) ~ 10x, тогда

11
 

Для решения пределов можно использовать онлайн калькуляторы, размещенные на ресурсах в свободном доступе.