Что такое множество в математике и как оно обозначается

Множество – это количество предметов или чисел, обладающих общими свойствами.

Множество в математике

Данное определение подходит к любой совокупности с одинаковыми признаками, независимо оттого, сколько предметов в нее входит: толпа людей, стог сена, звезды в небе.

В математике изучаемое понятие обозначается заглавными латинскими буквами, например: А, С, Z, N, Q, A1, A2 и т. д.

Объекты, составляющие группу, называются элементами множества и записываются строчными латинскими буквами: a, b, c, d, x, y, a1, a2 и т. д.

Границы совокупности обозначаются фигурными скобками { }.

Пример:

  1. А = {а, в, с, у} – А состоит из четырех элементов.

  2. Записать совокупность Z согласных букв в слове «калькулятор»:

Z = {к, л, т, р}, повторяющиеся согласные записываются один раз. Z состоит из четырех элементов.

Принадлежность элементов множеству обозначается знаком – Є.

Пример: N = {a, b, c, y}, а Є N – элемент «а» принадлежит N.

Виды множеств

Выделяют три вида множеств:

  • конечные - совокупности, имеющие максимальный и минимальный предел (например, отрезок);

  • бесконечные - не являющиеся конечными (например, числовые);

  • пустые (обозначаются Ø) – не имеющие элементов.

Если две разные совокупности содержат одинаковые элементы, то одна из них (со всеми своими элементами) является подмножеством другой и обозначается знаком - ⊆.

Пример: А = {а, в, с, у} и В = {а, в, с, е, к} – все элементы А являются элементами совокупности В, следовательно А ⊆ В. 

Если множества состоят из одинаковых элементов, их называют равными.

Пример: А = {23, 29, 48} и В = {23, 29, 48}, тогда А = В.

В математике выделяют несколько числовых совокупностей. Рассмотрим их подробнее.

Множество натуральных чисел

К совокупности натуральных чисел (N) относятся цифры, используемые при счете - от 1 до бесконечности.

Множество натуральных чисел

Натуральные числа используют для исчисления порядка предметов. Обязательное условие данной числовой группы - каждое следующее число больше предыдущего на единицу.

N = {9, 11, 13, 15……}.

Относится ли ноль к натуральным числам? Это до сих пор открытый вопрос для математиков всего мира.

Множество целых чисел

Совокупность целых чисел (Z) включает в себя положительные натуральные и отрицательные числа, а также ноль:

Z = {-112, -60, -25, 0, 36, 58, 256}.

Следовательно, N - подмножество Z, что можно записать как N ⊆ Z. Любое натуральное число можно назвать так же и целым.

Множества целых и рациональных чисел

Множество рациональных чисел

Совокупность рациональных чисел (Q) состоит из дробей (обыкновенных и десятичных), целых и смешанных чисел:

Q={-½; 0; ½, 5; 10}.

Любое рациональное число можно представить в виде дроби, у которой числителем служит любое целое число, а знаменателем – натуральное:

5 = 5/1 = 10/2 = 25/5;

0,45 = 45/100 = 9/20.

Следовательно, N и Z являются подмножествами Q.


Операции над множествами

Точно так же, как и все математические объекты, множества можно складывать и вычитать, то есть совершать операции.

Операции над множествами

Если две группы образуют третью, содержащую элементы исходных совокупностей – это называется суммой (объединением) множеств и обозначается знаком ∪.

Пример: В = {1, 6, 17} и С = {2, 13, 18}, В ∪ С= {1, 2, 6, 13, 17, 18}.

Если две группы совокупностей образуют третью, состоящую только из общих элементов заданных составляющих, это называется произведением (пересечением) множеств, обозначается значком ∩.

Пример: В = {36, 42, 53, 64} и С = {32, 42, 55, 66}, В ∩ С = {42}.

Если две совокупности образуют третью, включающую элементы одной из заданных групп и не содержащую элементы второй, получается разность (дополнение) совокупностей, обозначается значком /.

Пример: В = {12, 14, 16, 18} и С = {13, 14, 15, 17}, В / С = {14}.

В случае, когда В / С = С / В, получается симметричная разность и обозначается значком Δ.

Для «чайников» или кому трудно даётся данная тема операции с совокупностями можно отобразить с помощью диаграмм Венна:

Объединение

Объединение

Пересечение

Пересечение

Дополнение

Дополнение

С помощью данных диаграмм можно разобраться с законами де Моргана по поводу логической интерпретации операций над множествами. 


Свойства операций над множествами

Операции над множествами обладают свойствами, аналогичными правилу свойств сложения, умножения и вычитания чисел:

Свойства операций над множествами

Коммутативность – переместительные законы:

  • умножения S ∩ D = D ∩ S;

  • сложения S ∪ D = D ∪ S. 

Ассоциативность – сочетательные законы:

  • умножения (S ∩ F) ∩ G = S ∩ (F ∩ G);

  • сложения (S ∪ F) ∪ G = S ∪ (F ∪ G). 

Дистрибутивность – законы распределения:

  • умножения относительно вычитания S ∩ (F – G) = (S ∩ F) – (S ∩ G);

  • умножения относительно сложения G ∩ (S ∪ F) = (G ∩ S) ∪ (G ∩ F);

  • сложения относительно умножения G ∪ (S ∩ F) = (G ∪ S) ∩ (G ∪ F). 

Транзитивность - законы включения:

  • если S ⊆ Fи F ⊆ J, то S ⊆ J;

  • если S ⊆ F и F ⊆ S, то S = F. 

Идемпотентность объединения и пересечения:

  • S ∩ S = S;

  • S ∪ S = S.

О других свойствах операций можно узнать из картинки:

Свойства операций над множествами


Счетные и несчетные множества

Если между элементами двух групп можно установить взаимное немногозначное соответствие, то эти группы чисел равномощны, при условии равного количества элементов. 

Счетное множество

Мощность данной математической единицы равна количеству элементов в ней. Например, множество всех нечетных положительных чисел равномощно группе всех четных чисел больше ста.

В случае, когда бесконечное множество равномощно натуральному ряду чисел, оно называется счетным, а если оно не равномощно - несчетным. Другими словами, счетная единица - это совокупность, которую мы можем представить в виде последовательности чисел по порядковым номерам. 

Несчетное множество

Но не все группы действительных чисел счетные. Примером несчетной группы предметов является бесконечная десятичная дробь.

Теория множеств - достаточно широкая тема, которая требует глубокого изучения. Она затрагивает начальный курс математики, изучается в среднем звене школьной программы по алгебре. Высшая математика, математический анализ, логика – рассматривают законы, теоремы, аксиомы множеств, на которых основаны фундаментальные знания науки.