Правило Лопиталя - вычисление пределов функций с примерами

Общие сведения
Важным понятием в высшей математике является определение бесконечности. Эта неопределённость обозначается символом ∞. Когда её упоминают, то имеют в виду как бесконечно малое число, так и большое. Для записи предела функций используется знак лимита, например, lim 0k (y). В нижней части указывается аргумент со стрелочкой, обозначающей, к чему именно стремится неопределённость. Если предел известный, то он называется конечным, в ином случае — бесконечным.
Когда нельзя установить, является ограничение бесконечным или конечным, то говорят, что предела для рассматриваемой функции не существует. Это возможно, например, когда ограничение тригонометрической функции стремится к бесконечности. Существует несколько способов вычисления пределов: правило Лопиталя, формулы Тейлера, графический метод, подставление неизвестного в функцию.Указанные способы можно применять для нахождения того или иного предела, но для неопределённости вида 0/0 или ∞/∞, а также вычисления отношений бесконечно малых или больших выражений лучше всего использовать закон Лопиталя. Состоит он из двух правил:

- Для бесконечно малых величин. Когда функции k (y) и d (y) можно дифференцировать в некоторой области точки, исключая саму её, при этом в этой окрестности производная выражения неравна нулю, а пределы этих функций равны нулю, то отношение ограничения этих функций будет равно пределу отношения их производных.
- Для бесконечно больших значений. Если две функции k (y) и d (y) можно дифференцировать по окрестности взятой точки, но при этом её саму исключить, учитывая, что в рассматриваемой окрестности производная d (y) не равняется нулю, то когда функции в этой точке равны бесконечности, предел отношения этих выражений тождественен отношению их производных.
Другими словами, смысл теоремы Лопиталя заключается в том, что когда нужно найти ограничение для двух функций, отношение которых даёт неопределённость 0/0 или ∞/∞, то можно взять производные этих выражений и найти их отношение. Это действие приведёт к получению искомого ответа. Метод позволяет упростить вычисление сложных показательных степенных функций. Его можно применять и при умножении неопределённостей или их вычитании. Например, 0 * ∞, ∞ - ∞.
Доказательство правила
Лопиталь после знакомства с Бернулли смог систематизировать метод Иоганна и издать в 1696 году книгу «Анализ бесконечно малых», где подробно изложил способы решения задач с неопределённостями. Математически его описание состоит из четырёх пунктов:
- lim k (y) = lim d (y) = 0 (∞).
- Графики k (y) и d (y) приближаются к линейному виду.
- d (y)' ≠ 0.
- lim k (y)' / d (y)' = lim k (y) / d (y).
Пусть имеется два дифференцируемых выражения, при этом d (y) во всех точках имеет не нулевую производную. При y, стремящемся к a, d стремится к бесконечности. Если предел отношения производных конечного предела или бесконечного равняется числу L, тогда ограничение отношений производных этих функций также будет тождественно этому числу. То есть lim k (y) / d (y) = L, при y → a. Исходя из определения Гейне и Коши, рассматривать можно только монотонные последовательности, которые стремятся к a.
Взяв произвольный ряд, который может расти yn → a, верно утверждать, что в соответствии со следствием теоремы Дарбу и условием d (y)' ≠ 0, рассматриваемая функция будет строго монотонной. А это означает, что последовательность d (yn) будет такой же. В тоже время из условия lim d (y) = ∞ следует, что d (yn) → ∞. При этом бесконечность может быть как со знаком минус, так и плюс.
Рассмотрим теорему Штольца, а именно отношение: (k (yn+1) — k (yn)) / (d (yn+1) — d (yn)) = k'(Cn) / d'(Cn) = L. Из неё следует, что k (y) / d (y) → L. То есть всегда найдётся такая точка Cn, которая будет принадлежать множеству (Yn+1,Yn). Так как множество стремится к L, то и точка, принадлежащая ему, тоже будет приближаться к L. Поэтому можно утверждать, что и выражение lim k (y) / d (y) → L.

Аналогичным образом первому доказывается и второй случай, когда lim k (y) = lim d (y) = 0. Если предел отношения производных будет L, то ограничения отношений функций будет также равняться этому числу. Из теоремы Дарбу и монотонности получим, что d (Yn) → 0, кроме того k (Yn) → 0. Используя правило Штольце, можно будет утверждать, что k (y) / d (y) → L.
Но на практике часто для решения примеров правило Лопиталя оказывается недостаточным. Это справедливо для заданий, в которых y стремится не к конечному числу, а к бесконечному. Поэтому для таких задач используется следствие из теоремы. Согласно ему, при k → 0 и d → 0, а y → + ∞. Тогда существует предел lim k'(y) / d'(y) = AЄR и предел отношений lim k (y) / d (y) = A. Этот вспомогательный закон очень важен и то же может быть доказан.
Следствие из утверждения
Перед доказательством следствия нужно условиться, что в выражении a будет всегда больше либо равно единице. Это возможно исходя из того, что если a будет меньше единицы, то доказывать нужно будет правило только от единицы до плюс бесконечности. Кроме этого, необходимо ввести замену вида t = 1/y. Она необходима, так как во многом облегчает сведение доказательства к теореме Лопиталя.

Пусть имеется функция K (t), равная k, и D (t), равная d. При этом аргумент последней будет 1/t. Так как по условию правила функции k и d определены на интервале от a до плюс бесконечности, то можно сказать, что функции K и D известны на интервале от нуля до единицы, делённом на a. Это верно из-за того, что если в исходной функции k и d икс подходил достаточно близко к плюс бесконечности, то в силу сделанной ранее замены t будет приближаться к нулю. Если же икс близок к a, то t будет приближаться к значению 1/a.
Так как a больше либо равняется единице, то интервал от нуля до единицы, делённой на a, будет определён корректно. Чтобы воспользоваться теоремой Лопиталя, нужно доказать, что предел lim K'(t) / D'(t) при t, стремящемся к нулю, равняется A. В силу того, что K (t) = k (1/t) и D (t) = d (1/t), можно написать: lim K'(t) / D'(t) = lim k'(1/t)' / d'(1/t)' .
Теперь нужно воспользоваться теоремой о производной композиции, условия которой выполнены. Вначале нужно взять производную внутренней функции, а затем внешней. Должно получиться следующее выражение: lim -1/ t 2 k '(1/ t) / (-1/ t 2) * d ' (1/ t) = lim K '(t) / D '(t) = lim k '(y)/ d (y) = A.
Отсюда можно утверждать, что предел отношений K'(t) / D'(t) будет равняться A. Все условия теоремы Лопиталя выполнены. А это значит, что существует предел отношения функций при t, стремящемся к нулю, равный A. Теперь можно снова применить теорему о пределе композиций и от переменной t перейти обратно к иксу: lim K (t)/D (t) = lim k (y)/(d (y) = A.
Таким образом можно сделать вывод, что требуемое утверждение верно. Использование правила и следствия позволяет выполнить быстрый расчёт неопределённости 0/0 или ∞/∞. При этом другого вида выражение можно свести к этой неопределённости. Это намного упрощает работу, особенно если необходимо логарифмировать или возводить в степень.
Решение примеров

Закрепить правило лучше всего на соответствующих примерах. Существуют типовые задания, чаще всего встречающиеся на контрольных работах. Например, требуется найти предел отношения натурального логарифма от тангенса икс к котангенсу два икс, когда неизвестное стремится к p /4. Помощь в решении окажет правило Лопиталя, которое при сравнении с альтернативными методами окажется на порядок проще.
Для того чтобы понять, какого вида неопределённость в задании, нужно в числитель и знаменатель подставить p/4. Тогда: ln td p /4 = ln 1 = 0 и ctd p /2 = 0. По правилу можно свести нахождение предела функций к вычислению их производных. Искомый предел: A = lim (lntdy ') / (ctd 2 y)' = lim (ctdy * 1/ cos 2 y) / 2 (-1/ sin 2 2 y) = lim (-sin 2 y)(2 * siny * cosy) = (-½) * lim (sin 2 2 y / siny * cosy) = - ½ * 1/½ = -1. Таким образом, решение будет равняться минус единице.
Пусть есть выражение вида: lim y½ (p — 2 arctd √ y) = A. Нужно определить предел при иксе, стремящемся к плюс бесконечности. Чтобы воспользоваться правилом, исходное выражение нужно привести к дробному виду. Для этого выражение можно переписать как lim (p — 2 arctd √ y) / y½. В этом случае имеет место неопределённость 0/0. Поэтому можно рассматривать отношение производной делимого на делитель: A = lim (2 *(1/1+ y) * ½ * y -½ ) / ½ * y -3/2 = lim 2y/(1+y) = 2 lin 1 /(1+ 1/ y) = 2.

Замечательным случаем является неопределённость вида ∞/∞. Например, требуется найти предел lim k (y) при иксе, стремящемся к бесконечности, где функция k (y) = y /ey. По теореме Лопиталя A = lim (y)' / (ey)', а это выражение есть не что иное, как lim 1/ey, равняющийся нулю. Теперь можно рассмотреть пример сложнее.
Пусть дано выражение нормальной функции со степенью: lim yy = A, где A = lim k (y). Проэкспоненцируя эту функцию, выражение можно привести к виду: yy = ey *lny. Если найти, к чему стремится показатель экспоненты, то это и будет решением рассматриваемого примера. Можно записать: lim y * lny = lim lny /1/ y = lim (1/ y)/(-1/ y 2 ) = 0. Если предел в показателе экспоненты стремится к нулю, то можно написать, что он будет равняться e0, то есть единице. А это и будет искомый предел: lim k (y) = 1 при иксе, стремящемся к плюс бесконечности.
Закон Лопиталя является хорошим помощником при вычислении особо экзотических пределов. При этом можно попробовать составить выражение, отвечающее условиям правила и из неявного вида функции. Для этого можно использовать раскрытие скобок, дополнительно умножить или разделить функцию на однородный многочлен.
Использование онлайн-калькулятора

Не всегда задания, попадающиеся на практике, довольно легко привести к условию, отвечающему правилу. Да и нередко сама функция настолько умудрённая, что для определения производной понадобится не только проявить внимание и усидчивость, но и затратить довольно много времени. Поэтому в таких случаях есть резон решать задания на онлайн-калькуляторе с подробным решением. Правило Лопиталя отлично поддаётся автоматизированному вычислению.
Такую услугу предлагают более десятка специализированных на математических расчётах сайтов. Доступ к вычислениям предоставляется полностью бесплатно. От пользователя даже не требуется регистрации и указания персональных данных. Работают они на основе алгоритмов, заложенных в программный код используемого онлайн-приложения. Пользователю нужно лишь только подключение к интернету и любой веб-обозреватель.
Все его действия сводятся к введению в предложенную форму условия примера и нажатия кнопки «Рассчитать». После этого программа автоматически вычислит ответ и выведет его на дисплей. При этом в большинстве случаев вместе с ответом приложение отобразит пошаговый расчёт с комментариями. Это позволит потребителю не просто получить готовый ответ, но и разобраться в решении.
Из наиболее популярных сайтов можно выделить следующую пятёрку:

- Math.semestr.
- Kontrolnaya-rabota
- Planetcalc.
- Math24.
- Webmath.
Все эти сайты имеют интуитивно понятный интерфейс на русском языке. Кроме предоставления услуги онлайн-калькулятора, на их страницах содержится вся необходимая теория, помогающая понять, как происходит нахождение ответа. А также приведены несколько типовых примеров с подробным решением.
Пользоваться такими сайтами сможет даже пользователь, ничего не понимающий в математическом анализе. Но решая различные примеры, со временем он поймёт суть идеи правила и сможет самостоятельно вычислять пределы функций. При этом такие сайты являются отличным подспорьем как инженерам, проводящим сложные вычисления, так и студентам, проверяющим свои навыки.
Еще тесты
- Анатомия
- Английский язык
- Астрономия
- Биология
- Литература
- История
- Педсовет
- Естествознание
- Финансы и кредит
- Правоведение
- Товароведение
- Экономика
- Социология
- Маркетинг
- Обществознание
- Культурология
- Математика
- Философия
- Русский язык
- Психология
- Политология
- Делопроизводство
- Бухгалтерия
- ОБЖ
- Орфография
- География
- Биографии
- Физика
- Пунктуация
- Краткие содержания
- Химия
- Менеджмент
- Тест на тему Тест по теме Дыхательная система человека 7 вопросов
- Тест на тему Строение человека - анатомия внутренних органов 7 вопросов
- Тест на тему Гормоны - определение, виды, функции, роль в организме человека 5 вопросов
- Тест на тему Лейкоциты в крови - строение, где образуются и разрушаются, норма содержания 5 вопросов
- Тест на тему Одноклеточные организмы - строение , формы и признаки представителей 8 вопросов
- Тест на тему Бесполое размножение - виды, формы и биологическое значение процесса 9 вопросов
- Тест на тему Синтез АТФ - структура, функции и пути образования аденозинтрифосфорной кислоты 7 вопросов
- Тест на тему Биогеоценоз - определение, структура и свойства 5 вопросов
- Тест на тему Символизм в литературе - основные черты и представители направления 6 вопросов
- Тест на тему "У Лукоморья дуб зеленый" - анализ стихотворения Александра Сергеевича Пушкина 8 вопросов
- Тест на тему Родион Раскольников и Соня Мармеладова - история взаимоотношений в романе Ф. М. Достоевского "Преступление и наказание" 6 вопросов
- Тест на тему Семья Мелеховых в романе М. Шолохова "Тихий дон" 7 вопросов
- Тест на тему Отечественная война 1812 года - причины, основные сражения, итоги 7 вопросов
- Тест на тему Правление Ивана Грозного - внутренняя и внешняя политика 7 вопросов
- Тест на тему Образование СССР - причины, этапы становления, состав, итоги 6 вопросов
- Тест на тему Крещение руси князем Владимиром - причины, история, значение принятия христианства 6 вопросов
- Тест на тему Пищевая цепочка в природе - звенья, схемы и примеры цепей 5 вопросов
- Тест на тему Экологические факторы - классификация, примеры, общие закономерности воздействия 5 вопросов
- Тест на тему Биосфера - определение, состав, свойства, границы 5 вопросов
- Тест на тему Возникновение жизни на земле 6 вопросов
- Тест на тему Права и свободы человека и гражданина 5 вопросов
- Тест на тему Унитарное предприятие - виды, признаки, участники, особенности 7 вопросов
- Тест на тему Формы собственности - типы и виды и их характеристика 7 вопросов
- Тест на тему Предпринимательское право - понятие, принципы, предмет и объект, функции 5 вопросов
- Тест на тему Ликвидность предприятия - определение, виды, формула расчета 7 вопросов
- Тест на тему Процентная ставка - понятие, виды, методы расчета и начисления 5 вопросов
- Тест на тему Финансы - определние, сущность, основные функции, виды 7 вопросов
- Тест на тему Коммерческая деятельность - сущность и содержание 7 вопросов
- Тест на тему Статистическое наблюдение - виды, способы, последовательность этапов 6 вопросов
- Тест на тему Социальный контроль - понятие и функции, формы и методы, значение 5 вопросов
- Тест на тему Анкетирование - правила составления и виды вопросов, оформление результатов 5 вопросов
- Тест на тему Социальная группа — понятие, типы, критерии выделения 8 вопросов
- Тест на тему Деятельность человека - основные виды и характеристики 7 вопросов
- Тест на тему Воздушно-десантные войска (ВДВ) - история создания, подразделения, оснащение 7 вопросов
- Тест на тему Субъекты РФ - количество, виды, правовой статус 7 вопросов
- Тест на тему Социальные нормы - понятие, виды и характеристка, функции, примеры 6 вопросов
- Тест на тему Что такое угол 5 вопросов
- Тест на тему Деление в столбик — подробное описание алгоритма решения задач, примеры 10 вопросов
- Тест на тему Вычитание дробей - правила и примеры с решениями 5 вопросов
- Тест на тему Модуль числа - свойства, действия, как решать уравнения и неравенства с модулем 10 вопросов
- Тест на тему Ислам - история возникновения религии, основные положения 7 вопросов
- Тест на тему Мышление - определение, виды, функции, свойства 5 вопросов
- Тест на тему Что такое мораль, ее категории и функции 6 вопросов
- Тест на тему Буддизм - кратко о религии (история возникновения, основные положения, священные книги) 6 вопросов
- Тест на тему Безличные предложения в русском языке 8 вопросов
- Тест на тему Ударение в словах в русском языке - правила и проверка постановки 5 вопросов
- Тест на тему Морфемный разбор слова - правила выполнения с примерами 5 вопросов
- Тест на тему Сложноподчиненные предложения в русском языке 6 вопросов
- Тест на тему Мотивация - определение, виды и типы в психологии, менеджменте 5 вопросов
- Тест на тему Интеллект - понятие, признаки, как развивать, оценка 5 вопросов
- Тест на тему Социализация личности - понятие и сущность, агенты, примеры 5 вопросов
- Тест на тему Типы темперамента и их психологическая характеристика 5 вопросов
- Тест на тему Органы исполнительной власти РФ - понятие и правовой статус, структура и фунции 7 вопросов
- Тест на тему Европейский союз - история создания, цели, состав 5 вопросов
- Тест на тему Тоталитаризм - определение, характерные черты, плюсы и минусы идеологии 5 вопросов
- Тест на тему Политическая идеология - определение понятия, функции, классификация, особенности 5 вопросов
- Тест на тему Оборотные средства предприятия, их структура, учет и анализ 7 вопросов
- Тест на тему Бюджетная классификация - определение, структура 7 вопросов
- Тест на тему Калькуляция - основные понятия, примеры расчетов себестоимости 7 вопросов
- Тест на тему Бухгалтерский учет материально-производственных запасов на предприятии 8 вопросов
- Тест на тему Пистолет Макарова - шпаргалка по тактико-техническим характеристикам 9 вопросов
- Тест на тему Чрезвычайная ситуация - понятие, типы ЧС, причины возникновения, стадии развития 7 вопросов
- Тест на тему Вооруженные силы Российской Федерации — организационная структура и предназначение 7 вопросов
- Тест на тему ВМФ (Военно-Морской флот) России - структура, история, состав 7 вопросов
- Тест на тему Перу - географическое положение, климат и достопримечательности 9 вопросов
- Тест на тему Климатические пояса Земли - характеристика и особенности 8 вопросов
- Тест на тему Тайга - географическое положение, животный и растительный мир, особенности и характеристика природной зоны 7 вопросов
- Тест на тему Озеро - определение, классификация, признаки 6 вопросов
- Тест на тему Братья Гримм - биография, жизнь и творчество немецких писателей 10 вопросов
- Тест на тему Тамерлан (1336-1405) - биография, жизнь и завоевания великого полководца 10 вопросов
- Тест на тему Максим Горький (1868-1936) - биография, кратко самое важное, интересные факты из жизни писателя 9 вопросов
- Тест на тему Блок Александр Александрович (1880-1921) - биография, жизненный и творческий путь 11 вопросов
- Тест на тему "Ночь перед Рождеством" - краткое содержание повести Н. В. Гоголя 10 вопросов
- Тест на тему "Маленький Мук" - краткое содержание сказки Вильгельма Гауфа 10 вопросов
- Тест на тему "Дворянское гнездо" - краткое содержание романа И.С. Тургенева 8 вопросов
- Тест на тему "Бирюк" - краткое содержание рассказа И.С. Тургенева 10 вопросов
- Тест на тему Серная кислота - химические и физические свойства и реакции 8 вопросов
- Тест на тему Муравьиная кислота - формула, свойства, получение и применение 7 вопросов
- Тест на тему Сложные эфиры - характеристика, классификация и примеры соединений 8 вопросов
- Тест на тему Толуол - формула, свойства и применение химического вещества 8 вопросов
- Тест на тему Оценка персонала - виды, критерии и методы 7 вопросов
- Тест на тему Управление персоналом - задачи, функции, современные подходы 5 вопросов
- Тест на тему Менеджмент предприятий — сущность, виды, задачи и цели 7 вопросов
- Тест на тему Организационная структура предприятия — типы и предназначение 7 вопросов