Производная корень из Х - формулы и примеры вычислений

Понятие производной
Смысл производной основан на понятии предела функции. Состоит запись выражения из трёх частей, в одной из которых указывается, к чему стремится неизвестное. Оно может достигать как нуля, так и бесконечности. Таким образом, предел представляет собой динамическую величину. Например, пусть имеется некая функция f (x) = (1 + x)1/x.
При иксе, который равен нулю, функция будет не определена, но можно исследовать, как она будет себя вести при приближении переменной к нулю. Для этого можно взять какое-либо значение икса и, подставив его в уравнение, вычислить функцию. Затем в формулу подставить иное произвольное число, но такое, чтобы оно было меньше предыдущего, то есть приближалось к нулю.
Выполнив несколько таких вычислений, можно увидеть, что значение функции начнёт приближаться к некой величине. Это значение и считается пределом рассматриваемого выражения при иксе, стремящемся к нулю.
Следует рассмотреть другую функцию: f (x) = 1 / x. Подставляя вместо икса различные числа, можно будет отметить, что при уменьшении исходной величины переменной числовое значение в ответе увеличивается, то есть результат функции ничем не ограничивается. Это означает, что при иксе, который стремится к нулю, предел будет равняться бесконечности.

Понятие предела помогает дать определение непрерывности. Функция f (x) непрерывна в точке x = c только тогда, когда знак предела и выражения можно поменять друг с другом местами: lim f (x) = f (lim x) = f с. Используя это свойство, можно определить точки разрыва и непрерывность. Зная определения можно понять, что представляет собой производная.
Пусть имеется линейная функция y = k * x + b, графиком которой будет прямая. При изменении икса на дельту по игреку будет происходить прирост на Δy = k * Δx. Получается, что величина k является скоростью роста функции: k = (f (x + Δx) — f (x)) / Δx. В этом случае график прямой имеет постоянный наклон, поэтому коэффициент k — константа.
Если же функция имеет произвольный вид, например, она состоит из сложного многочлена с дробями и квадратами, то, как вычислить постоянную k, непонятно. Вот тут на помощь и приходит понятие производной. Можно взять отношение дельта-икс на дельта-игрек и посмотреть, какой предел будет у функции: f'(x) = lim (f (x + Δx) — f (x)) / Δx. По сути, это действие и является нахождением производной.
Свойства корня
Находить производные подкоренных выражений невозможно без знания свойств степеней и корней. По определению, корнем квадратным из произвольного числа, которое больше нуля, называется такое неотрицательное число, которое при возведении в квадрат равняется этому числу.
То есть выражение √a = b тождественно равенству: b2 = a. Например, √16 = 4, так как 42 = 16. Таким образом, можно утверждать, что корнем энной степени числа а будет такое выражение, которое при возведении в эту степень будет равняться а. Степень корня указывается в верхнем регистре значка, а основание записывается под знаком корня и называется подкоренным выражением.
Выделяют следующие свойства корней:

- Если подкоренное выражение представляет умножение неотрицательных чисел, то корень квадратный будет равняться произведению корней членов выражения: √ a * b * … * n = √ a * √ b * … * √ n.
- Когда под корнем находится отношение двух положительных чисел, то для решения выражения нужно извлечь корень из числителя и знаменателя, а после выполнить деление: √ a / b = √ a / b = √ a / √ b.
- В случае когда а больше или равняется нулю и при этом n является натуральным, то корень из подкоренного выражения будет равняться а в степени n: √ a2n = an.
- При действительном числе и чётном значении показателей подкоренного выражения будет справедливым равенство: 2*m√ a2*m = | a |. Если же показатель нечётный, то в ответе действительное число будет всегда положительное.
- При извлечении корня из корня n√ m√ действие можно заменить произведением показателей при неизменном подкоренном выражении.
- Сложение и вычитание корней возможно только в том случае, когда количественные или буквенные значения подкоренных выражений совпадают: n √ m + k √ m = (n + k) √ m.
- Умножить корни с одинаковыми показателями возможно лишь тогда, когда показатель у всех перемножаемых членов одинаков: √ n * √ m = √ n * m.
Для любой степени существует основная формула, по которой может быть найдена производная.
Выглядит она как (xn)' = n * xn -1. Эта формула используется и для дифференцирования корней. Кроме этого, для успешного решения задач на нахождение производной квадратного корня из х необходимо знать и свойства степеней.
Нахождение выражения из Х
В общем случае формула производной корня из х равна дроби, в числителе которой стоит единица, а в знаменателе произведение степени корня на корень той же степени в подкоренном выражении, где находится неизвестное, уменьшенное на единицу, в степени. Математически это теорема записывается следующей формулой: (n√x)' = 1 / (n * n√ xn-1).

Эта формула имеет название первообразной. Она подходит для использования в выражениях любой кратности. В качестве примера можно рассмотреть взятие производной квадратного и кубического корня.
Так, для квадратного степенного уравнения справедливо выражение: (n√x)' = 1 / 2 * √x. То есть производная квадратного корня х является дробью, делимое которой равняется единице, а делитель состоит из двойки, умножаемой на квадратный корень из неизвестного.
Аналогично можно сформулировать теорему и для нахождения производной кубического корня из x. Для этого случая решением задания на вычисление производной будет дробь, в числителе которой находится единица, а в знаменателе произведение тройки на корень кубический из икса в степени два. Формула для вычисления выглядит следующим образом: (3√x)' = 1 / (3 3 √x2).
Можно обратить внимание, что, по сути, операция сводится к таким же действиям, как и при возведении дробей в степень, когда делитель равняется тому же показателю.
Иными словами, вычисление производной коренного выражения сводится к использованию формул для нахождения функции дроби.
Для доказательства формул используют следующие рассуждения. Производная переменной под квадратным корнем это то же, что и нахождение функции при возведении многочлена в степень одна вторая: (√x)' = (х ½)'. Поэтому можно воспользоваться формулой для расчёта производной неизвестного числа в степени эн. А значит, запись вида (х½)' = ½ х-½ = 1 / (2√х) будет верной.
Формула производной третьей степени доказывается по такому же принципу. Используя правило дифференцирования и переписав кубический корень как тройную степень, можно записать: (3√x)' = (х 1/3 )' = 1 / 3 * (x-2/3) = 1 / 3 * (3√х2). Тут следует отметить, что степень -2/3 образовывается путём вычитания единицы из дроби, в числителе которой стоит два, а в знаменателе три.
Примеры заданий
При взятии производной функции f (x) = n√хm необходимо привести корень к степенному виду: f (x)' = (n√х m)' = xm/n.

Так как из производных степени известно, что (xm)' = m * xm-1, то и алгоритм решения для нахождения ответа коренного выражения сводится к преобразованию исходного уравнения путём перехода к степени: f (x)' = (n√хm)' = (xm/n)' = m/n * x (m/n) -1 = (m/n * n√хm-n).
Этот подход позволяет не запоминать сложную формулу, что часто и используется на практике.
Для закрепления теории следует решить несколько типовых примеров:

- Определить, чему будет равна производная от корня квадратного, кратного разности три минус икс в квадрате. Запись условия задачи выглядит так: (√ 3 — x 2)'. Мысленно можно обозначить выражение в скобках буквой S. Получается, что задача будет состоять в поиске производной (√ S)'. Используя знание формулы, можно утверждать, что (√ S)' = S' / (2 * √ S). Ту же самую формулу можно будет получить, воспользовавшись преобразованием задания в степенную функцию: (√ S)' = (S½)' = (½) * S(½ — 1 ) * S' = S-½ * S' / 2 = S' / (2 * √ S). Таким образом, (√ 3 — x 2)' = (3 — x2)' / (2 * √ 3 — x2) = - 2* x / 2 * √ 3 — x2 = - x / √ 3 — x2.
- Рассчитать, чему будет равна производная функции 1 / (2 * 3√ x7). Исходное выражение нужно преобразовать так, чтобы неизвестная оказалась в числителе, а затем уже воспользоваться стандартным алгоритмом: (1 / 2 * 3√ x7)' = 1 / 2 * (x-7/3)'. Теперь нужно взять производную от степенной функции. В итоге получится выражение: 1 / 2 * (-7 / 3) * x (-7/3) — 1 = -(7 / 6) * x-10/3 = (-7 / 6) * (1 / 3√ x10).
- Необходимо найти производную суммы многочленов: p (x) = 3 + 4 √ x+3. По теореме дифференцирования ответ будет равняться сумме производных каждого члена равенства: p (x)' = (3)' + (4 √ x+3)'. Первое слагаемое равняется нулю, поэтому останется только найти производную корня. Используя снова правило производной, выражение можно переписать как 4 * (√ x+3)'. На следующем этапе многочлен в скобках нужно представить в виде степенной функции: (√x + 3)' = 1 / ((2√x + 2)) * (x + 2)' = 2 * (x +2)' / √x+2. Так как производная суммы, это то же самое, что сумма производных, то будет верным записать: (4 √ x+2)' = (2 / √x+2) *({(x)' + (2)'}). Производная для двойки равна нулю, поэтому плюсовать её смысла нет. В итоге получится: p (x)' = (3 + 4 √ x+3)' = 2/ √x +2 = 2 / √x +2.
Расчёт на онлайн-калькуляторе
Попрактиковавшись в решении различных примеров, найти производную корня простых выражений будет довольно просто. Но если в заданиях будут стоять двойные корни или сама функция будет содержать большой многочлен, могут возникнуть проблемы. Связаны они обычно не с алгоритмом решения, а с трудностью вычисления и преобразования.
Такого рода задачи требуют повышенного внимания и скрупулёзности в расчётах. При этом поиску ответа понадобится уделить довольно много времени. Поэтому для помощи в нахождении производных коренных функций и существуют в интернете математические онлайн-калькуляторы.

Это сервисы, предлагающие бесплатно услуги по автоматическому расчёту производной любой сложности. Воспользоваться ими может каждый желающий, имеющий доступ к интернету. Для нахождения ответа не нужно обладать какими-то особыми знаниями. Всё что требуется от пользователя — ввести в предложенную форму условие и нажать кнопку «Вычислить». Весь процесс расчёта займёт одну-две секунды.
При этом большинство сервисов, кроме предоставления ответа на своих страницах, дает возможность ознакомиться с теоретическим материалом и предлагает рассмотреть решения заданий различной сложности. Поэтому вопроса, каким образом получился тот или иной ответ, возникнуть не должно.
Из различных онлайн-калькуляторов, считающих производные, можно выделить следующие:
- Webmath.
- Kontrolnaya-rabota
- Onlinemschool.
- Сalc.
- Nauchniestati.
Сайты, используемые для вычислений, характеризуются интуитивно понятным интерфейсом, не содержащим нагромождения ненужной информации. На их страницах нет рекламного и вирусного кода.

Примечательно и то, что, выполнив пару вычислений, пользователь научится самостоятельно вычислять производную. А всё дело в том, что особенностью таких ресурсов является возможность обучения. Кроме непосредственно ответа, программа-расчётчик выдаст пошаговое вычисление с комментариями.
Кроме учащихся, онлайн-калькуляторы будут полезны и инженерам. Даже незначительная ошибка, допущенная в расчёте, приведёт к неверному ответу. В то же время при автоматических вычислениях появление ошибки исключено.
Еще тесты
- Анатомия
- Английский язык
- Астрономия
- Биология
- Литература
- История
- Педсовет
- Естествознание
- Финансы и кредит
- Правоведение
- Товароведение
- Экономика
- Социология
- Маркетинг
- Обществознание
- Культурология
- Математика
- Философия
- Русский язык
- Психология
- Политология
- Делопроизводство
- Бухгалтерия
- ОБЖ
- Орфография
- География
- Биографии
- Физика
- Пунктуация
- Краткие содержания
- Химия
- Менеджмент
- Тест на тему Тест по теме Дыхательная система человека 7 вопросов
- Тест на тему Строение человека - анатомия внутренних органов 7 вопросов
- Тест на тему Гормоны - определение, виды, функции, роль в организме человека 5 вопросов
- Тест на тему Лейкоциты в крови - строение, где образуются и разрушаются, норма содержания 5 вопросов
- Тест на тему Одноклеточные организмы - строение , формы и признаки представителей 8 вопросов
- Тест на тему Бесполое размножение - виды, формы и биологическое значение процесса 9 вопросов
- Тест на тему Синтез АТФ - структура, функции и пути образования аденозинтрифосфорной кислоты 7 вопросов
- Тест на тему Биогеоценоз - определение, структура и свойства 5 вопросов
- Тест на тему Символизм в литературе - основные черты и представители направления 6 вопросов
- Тест на тему "У Лукоморья дуб зеленый" - анализ стихотворения Александра Сергеевича Пушкина 8 вопросов
- Тест на тему Родион Раскольников и Соня Мармеладова - история взаимоотношений в романе Ф. М. Достоевского "Преступление и наказание" 6 вопросов
- Тест на тему Семья Мелеховых в романе М. Шолохова "Тихий дон" 7 вопросов
- Тест на тему Отечественная война 1812 года - причины, основные сражения, итоги 7 вопросов
- Тест на тему Правление Ивана Грозного - внутренняя и внешняя политика 7 вопросов
- Тест на тему Образование СССР - причины, этапы становления, состав, итоги 6 вопросов
- Тест на тему Крещение руси князем Владимиром - причины, история, значение принятия христианства 6 вопросов
- Тест на тему Пищевая цепочка в природе - звенья, схемы и примеры цепей 5 вопросов
- Тест на тему Экологические факторы - классификация, примеры, общие закономерности воздействия 5 вопросов
- Тест на тему Биосфера - определение, состав, свойства, границы 5 вопросов
- Тест на тему Возникновение жизни на земле 6 вопросов
- Тест на тему Права и свободы человека и гражданина 5 вопросов
- Тест на тему Унитарное предприятие - виды, признаки, участники, особенности 7 вопросов
- Тест на тему Формы собственности - типы и виды и их характеристика 7 вопросов
- Тест на тему Предпринимательское право - понятие, принципы, предмет и объект, функции 5 вопросов
- Тест на тему Ликвидность предприятия - определение, виды, формула расчета 7 вопросов
- Тест на тему Процентная ставка - понятие, виды, методы расчета и начисления 5 вопросов
- Тест на тему Финансы - определние, сущность, основные функции, виды 7 вопросов
- Тест на тему Коммерческая деятельность - сущность и содержание 7 вопросов
- Тест на тему Статистическое наблюдение - виды, способы, последовательность этапов 6 вопросов
- Тест на тему Социальный контроль - понятие и функции, формы и методы, значение 5 вопросов
- Тест на тему Анкетирование - правила составления и виды вопросов, оформление результатов 5 вопросов
- Тест на тему Социальная группа — понятие, типы, критерии выделения 8 вопросов
- Тест на тему Деятельность человека - основные виды и характеристики 7 вопросов
- Тест на тему Воздушно-десантные войска (ВДВ) - история создания, подразделения, оснащение 7 вопросов
- Тест на тему Субъекты РФ - количество, виды, правовой статус 7 вопросов
- Тест на тему Социальные нормы - понятие, виды и характеристка, функции, примеры 6 вопросов
- Тест на тему Что такое угол 5 вопросов
- Тест на тему Деление в столбик — подробное описание алгоритма решения задач, примеры 10 вопросов
- Тест на тему Вычитание дробей - правила и примеры с решениями 5 вопросов
- Тест на тему Модуль числа - свойства, действия, как решать уравнения и неравенства с модулем 10 вопросов
- Тест на тему Ислам - история возникновения религии, основные положения 7 вопросов
- Тест на тему Мышление - определение, виды, функции, свойства 5 вопросов
- Тест на тему Что такое мораль, ее категории и функции 6 вопросов
- Тест на тему Буддизм - кратко о религии (история возникновения, основные положения, священные книги) 6 вопросов
- Тест на тему Безличные предложения в русском языке 8 вопросов
- Тест на тему Ударение в словах в русском языке - правила и проверка постановки 5 вопросов
- Тест на тему Морфемный разбор слова - правила выполнения с примерами 5 вопросов
- Тест на тему Сложноподчиненные предложения в русском языке 6 вопросов
- Тест на тему Мотивация - определение, виды и типы в психологии, менеджменте 5 вопросов
- Тест на тему Интеллект - понятие, признаки, как развивать, оценка 5 вопросов
- Тест на тему Социализация личности - понятие и сущность, агенты, примеры 5 вопросов
- Тест на тему Типы темперамента и их психологическая характеристика 5 вопросов
- Тест на тему Органы исполнительной власти РФ - понятие и правовой статус, структура и фунции 7 вопросов
- Тест на тему Европейский союз - история создания, цели, состав 5 вопросов
- Тест на тему Тоталитаризм - определение, характерные черты, плюсы и минусы идеологии 5 вопросов
- Тест на тему Политическая идеология - определение понятия, функции, классификация, особенности 5 вопросов
- Тест на тему Оборотные средства предприятия, их структура, учет и анализ 7 вопросов
- Тест на тему Бюджетная классификация - определение, структура 7 вопросов
- Тест на тему Калькуляция - основные понятия, примеры расчетов себестоимости 7 вопросов
- Тест на тему Бухгалтерский учет материально-производственных запасов на предприятии 8 вопросов
- Тест на тему Пистолет Макарова - шпаргалка по тактико-техническим характеристикам 9 вопросов
- Тест на тему Чрезвычайная ситуация - понятие, типы ЧС, причины возникновения, стадии развития 7 вопросов
- Тест на тему Вооруженные силы Российской Федерации — организационная структура и предназначение 7 вопросов
- Тест на тему ВМФ (Военно-Морской флот) России - структура, история, состав 7 вопросов
- Тест на тему Перу - географическое положение, климат и достопримечательности 9 вопросов
- Тест на тему Климатические пояса Земли - характеристика и особенности 8 вопросов
- Тест на тему Тайга - географическое положение, животный и растительный мир, особенности и характеристика природной зоны 7 вопросов
- Тест на тему Озеро - определение, классификация, признаки 6 вопросов
- Тест на тему Братья Гримм - биография, жизнь и творчество немецких писателей 10 вопросов
- Тест на тему Тамерлан (1336-1405) - биография, жизнь и завоевания великого полководца 10 вопросов
- Тест на тему Максим Горький (1868-1936) - биография, кратко самое важное, интересные факты из жизни писателя 9 вопросов
- Тест на тему Блок Александр Александрович (1880-1921) - биография, жизненный и творческий путь 11 вопросов
- Тест на тему "Ночь перед Рождеством" - краткое содержание повести Н. В. Гоголя 10 вопросов
- Тест на тему "Маленький Мук" - краткое содержание сказки Вильгельма Гауфа 10 вопросов
- Тест на тему "Дворянское гнездо" - краткое содержание романа И.С. Тургенева 8 вопросов
- Тест на тему "Бирюк" - краткое содержание рассказа И.С. Тургенева 10 вопросов
- Тест на тему Серная кислота - химические и физические свойства и реакции 8 вопросов
- Тест на тему Муравьиная кислота - формула, свойства, получение и применение 7 вопросов
- Тест на тему Сложные эфиры - характеристика, классификация и примеры соединений 8 вопросов
- Тест на тему Толуол - формула, свойства и применение химического вещества 8 вопросов
- Тест на тему Оценка персонала - виды, критерии и методы 7 вопросов
- Тест на тему Управление персоналом - задачи, функции, современные подходы 5 вопросов
- Тест на тему Менеджмент предприятий — сущность, виды, задачи и цели 7 вопросов
- Тест на тему Организационная структура предприятия — типы и предназначение 7 вопросов