Общая информация о регрессионном анализе

Общая информация

Метод моделирования пар данных и исследования их свойств представляет собой раздел математической статистики, который используют для выявления статистических закономерностей, объединяющих ряд величин. При этом некоторые данные являются случайными. Анализируя зависимости, исследователь может построить модель регрессии.

Полученные данные — основа регрессионного анализа и база для дальнейшего изучения, которое основывается на том, что между числами всегда существуют известные или скрытые связи. Первые получаются путём вычислений с помощью формул, а вторые необходимо прогнозировать и объяснять, иначе не получится изменять их так, как нужно для решения различных задач. Корреляционно-регрессионный анализ позволяет обнаружить скрытые зависимости и представить их в виде математических выражений. Цели, для которых используются формулы:

  • управление;
  • предсказание;
  • объяснение.

С помощью аналитики выводят коэффициент корреляции, который означает силу связей. Чем она существеннее, тем легче создать регрессионную модель. В статистике этот метод является основным. Этапы регрессионного анализа располагаются в таком порядке:

  • собирают данные;
  • подвергают их предварительной обработке;
  • выбирают вид уравнения;
  • рассчитывают коэффициент;
  • строят функцию;
  • проверяют правильность расчётом с помощью наблюдений.

Метод проведения

Метод проведения регрессионного анализа

В теории описать уравнение регрессии можно только при условии, что известен закон, по которому распределяются результативные значения функции y при заданных параметрах аргумента x. На практике учёные не располагают знанием такой закономерности, поэтому приходится подбирать подходящие варианты аппроксимаций (близких значений) для неизвестной функции.

Взаимоотношение между истинной функцией, модельной регрессией и её оценкой можно рассмотреть на примере. Для этого нужно сделать допущение. Пусть показатель и аргумент связаны следующим образом: у=2х 1,5+o. В этой формуле o представляет собой случайное значение величины, распределяемой в соответствии с нормальным законом. Необходимо сделать ещё 2 допущения: d o- o 2 и M o= 0.

Тогда уравнение, описывающее функцию регрессии, примет такой вид: f (х) = М (у/х) = 2х i 1,5+ o. Чтобы при наличии исходных данных получить максимально точные значения функции регрессии и результирующего показателя, используют метод наименьших квадратов. При вычислениях минимизируют квадрат величины, на которую результативное значение отклоняется от модельного. Получают такое выражение: o (y i) — f (х i)2 > min. Это среднеквадратичная регрессия.

Дальнейшие действия проводят с использованием метода наименьших модулей. Получают следующее выражение: y-f (xj) — min. Оно описывает медианную регрессию.

Работа в таблицах Ms Excel

В информатике анализ данных позволяет разрабатывать и исследовать алгоритмы и методы, с помощью которых добывается информация из сведений, полученных экспериментальным путём. Исследования удобно проводить в Ms Excel, однако нужно учитывать, что работать в режиме онлайн с этим приложением не получится. Средства, которые можно использовать для анализа с помощью этого инструмента:

Работа в таблицах Ms Excel

  • построение сводных таблиц;
  • объединение данных;
  • частичное и полное суммирование;
  • подведение итогов в автоматическом режиме;
  • структуризация данных, представленных на отдельных листах;
  • проверка значений в книгах и листах на ошибки;
  • применение карт;
  • создание диаграмм;
  • обработка значений с использованием функций и формул;
  • выборочный анализ разными способами, включая сценарии, поиск решения, выбор параметра и другие.

 изучение корреляции при множестве значений

Инструменты, встроенные в Microsoft Excel, позволяют решать инженерные и статистические задачи высокого уровня сложности. Чтобы выполнить анализ, указывают входные данные и задают нужные параметры. Программа анализирует значения, применяя ту макрофункцию, которая подходит в этой ситуации. Результаты отображаются в специальных ячейках. Затем, применяя другие инструменты, данные можно вывести в виде графиков или диаграмм.

Графический вид удобен тем, что позволяет быстро обнаружить ошибки: они отображаются как нетипичные отклонения кривых. В таблицах найти неточности бывает сложно, так как списки бывают довольно большими. Кроме того, графики дают возможность не только проиллюстрировать информацию, но и проконтролировать корректность исходных данных. В некоторых случаях только графическое отображение позволяет правильно интерпретировать, обобщить и проанализировать информацию.

Множественный анализ

Этапы и виды исследования

Общее назначение этого метода состоит в том, чтобы определить, как изменяется зависимая переменная, когда на неё воздействуют несколько факторов. Это легко понять на примере. Цена товара изменяется, подвергаясь влиянию ряда индикаторов. В виде равенства это можно представить так: изменение цены = a * RSI + b * MACD + с. Выражение будет корректным только в том случае, если между независимым и зависимыми значениями есть корреляция.

Компоненты выражения связаны между собой, поэтому при удалении одного значение остальных может измениться. Коэффициенты a и b применяются для демонстрации вклада каждого независимого значения.

Уравнение показывает, как взаимодействуют его части в идеале. На практике реальные показатели отличаются от прогнозируемых, а разницу между ними именуют остатком. С помощью множественного анализа исследуют количественные показатели, причём их может быть сколько угодно. Для определения и изучения качественных значений, у которых нет переходных параметров, применяют другие инструменты.

Этапы и виды

Множественный анализ выполняют в несколько этапов. Сначала формулируют задачу и разрабатывают гипотезы с учётом специфики анализируемых явлений. Дальнейшая работа ведётся в таком порядке:

Классификация результатов регрессионного анализа

  • Определяют объясняющие и зависимые переменные.
  • Собирают статистическую информацию отдельно для каждого компонента, участвующего в анализе.
  • Формулируют гипотезу, допускающую, какой будет связь: линейной, множественной, простой, нелинейной.
  • Рассчитывают числовые значения для тех компонентов уравнения, относительно которых это возможно.
  • Оценивают степень точности анализа.
  • Выполняют интерпретацию результатов и сравнивают их с гипотезой. Оценивают, насколько полученные значения являются правдоподобными и корректными.
  • Прогнозируют, какие значения может принимать зависимый компонент.

Метод регрессионного анализа позволяет не только прогнозировать величины, но и классифицировать их. Предполагаемые значения вычисляются так: в уравнение на место независимых переменных подставляются числовые параметры, которые заведомо известны.

Классификация результатов

Для классификации результатов проводят линию регрессии. Она разделяет множество на 2 части: в одной находятся значения, которые больше нуля, в другой — меньше. Так данные на шкале распределяются по 2 классам. В свою очередь, регрессия подразделяется на несколько видов:

Методы определения регрессионного анализа

  • Парная. Так называется регрессия, в которой, наряду с незначимыми, есть доминирующий фактор x. Пример регрессионного анализа: в каждом регионе есть некоторое количество занятых людей (x) и собирается некоторая сумма налогов (y). Y зависит от доминирующего компонента x. Присутствуют и другие факторы, но их значимость гораздо ниже.
  • Обратная. Она заключается в том, что сначала составляют максимально полное уравнение, а затем последовательно исключают из него отдельные члены, каждый раз оценивая, насколько уменьшилась остаточная дисперсия. В итоговом уравнении останутся только те компоненты, которые оказали наиболее весомый вклад на её уменьшение.
  • Нелинейная. Этот вид анализа применяется, когда зависимость одной переменной от других не является линейной. Пример: засолённость почвы до определённого предела не оказывает влияния на урожайность культур. После достижения определённых значений это влияние начинает проявляться нелинейно. Зависимость можно представить в виде функции. Их существует несколько видов: показательные, логарифмические, тригонометрические, степенные, гауссова и кривые Лоренца.
  • Множественная. Бывает необходима, когда нужно рассчитать влияние множества независимых переменных на результативный признак. При этом присутствует фактор E — стохастический параметр, включающий влияние неучтённых компонентов.
  • Линейная. Используется для анализа эластичности спроса, прогнозирования загруженности веб-сервисов, стоимости ценных бумаг, объёмов продаж и т. д.
  • Логарифмически линейная. Применяется при моделировании реальных социально-экономических процессов, которые невозможно описать через линейную функцию.
  • Гиперболическая. Она имеет вид у=b+а/х. В экономике её применяют для выявления зависимости объёма выпускаемой продукции от затрат топлива, сырья и материалов, а также для других целей. Классический пример — кривая Филлипса. График оказывает связь между приростом заработной платы и уровнем безработицы.

Регрессионный анализ позволяет с максимальной эффективностью и наименьшими усилиями использовать накопленный теоретико-прикладной потенциал, выдвигать и обосновывать идеи, ставить и решать задачи.