Определение угла между скрещивающимися прямыми

Пересечение двух линий на плоскости говорит о наличии у них одной общей точки. Она же является центром их пересечения и делит их на лучи. 

Лучи формируют четыре угла, которые являются неразвернутыми. Зная о размере одного из них, можно вычислить значение и остальных. Точно можно утверждать, что если один из них – прямоугольный, то остальные три равнозначны ему, а линии будут перпендикулярными.

 

1002

Рис. 1 Графическое отображение пересечения прямых


Как найти угол между скрещивающимися прямыми

Для определения угла между двумя скрещивающимися линиями можно воспользоваться специальным онлайн-калькулятором или применить традиционный математический алгоритм для вычислений.

Предположим, что две бесконечные линии задаются уравнениями общего вида:

A1 + B1 + C1 = 0

A2 + B2 + C2 = 0

Искомое значение следует обозначить как φ. Численная величина угла измеряется в градусах от 0 до 90°, т. е. угол будет острым или прямоугольным. Необходимо ввести еще одно понятие– угол ψ между нормальными векторами данных прямых:

500

Если он меньше, либо равен 90°, то непосредственно сам искомый угол будет соответствовать его градусной мере. В случае когда ψ больше 90°, для вычисления φ необходимо применить известную формулу:

φ = 1800 — ψ.

Для обоих вариантов достоверно утверждение, что cos φ = lcos ψl. Выполнив необходимые вычисления, можно рассчитать искомое значение:

502

Если по условию задачи существует некий прямоугольный треугольник с известными сторонами, расположенными на двух прямых, то для вычисления угла между этими прямыми необходимо знать синус, тангенс и косинус искомого угла. 

Для нахождения значения синуса угла, образованного в результате пересечения двух прямых, вычисляют модуль косинуса этого угла, образованного направляющими векторами данных прямых.


Пример решения задачи

На школьных уроках геометрии для решения в классе часто предлагается следующий вид задач по поиску угла между двумя прямыми.

Ниже приведем алгоритм решения задачи, при которой бесконечные линии на плоскости заданы уравнениями общего вида, в которых присутствует угловой коэффициент.

Обозначим прямые как (L1) и (L2). Каждая из них задается уравнением следующего вида:

А1х + В1у + С1 = 0;

А2х + В2у + С2 = 0;

Зная, что нормальные вектора каждой из них имеют вид:

503

Суть задачи сводится к вычислению угла φ, образованного нормальными векторами.

Используем определение скалярного произведения векторов:

504

и координатное выражение их длин, а также их скалярное произведение:

505

В практических задачах по математике часто требуется найти не сам угол между пресекающимися прямыми, а составить уравнение их всех, при условии, что прямые пересекаются между собой.

Так, если прямые заданы уравнениями общего вида с коэффициентами, то

506

Последнее равенство часто называют уравнением биссектрис углов, образованных в результате пересечения прямых. Понятие «биссектриса» в геометрии - это некое геометрическое место точек, которые удалены на одинаковое расстояние от сторон угла.

Если прямые задаются уравнениями, включающими угловой коэффициент, который определяется тангенсом угла, найти значение углов, образованных при их пересечении, достаточно просто:

507

Рис. 2 Углы, образованные пересечением двух прямых на плоскости

 

tan α = k1;

tan β = k2;

где k1 и k2 – те самые угловые коэффициенты.

Следовательно, чтобы вычислить значение γ, следует применить формулы:

γ = α - β

tan γ = tan (α - β)

Решение очевидно:

510