Бином ньютона

Древние знания

Частные случаи утверждений о биномах были известны примерно с IV века до нашей эры, когда знаменитый греческий математик Евклид упомянул особый случай такой теоремы для показателя 2. Существует доказательство того, что подобие теоремы о биномах для кубов было известно уже в VI веке в Индии. Биномиальные коэффициенты, как комбинаторные величины, выражающие число способов выбора k объектов из n без замены, представляли интерес для древнеиндийских математиков.

Индийский математик Пингала

Самое раннее упоминание этой комбинаторной проблемы встречается у индийского математика Пингала (ок. 200 г. до н. э.). В нём, кстати, содержится и метод её решения. В X веке нашей эры эту теорию прокомментировал и расширил Халаюдх, используя метод, который сейчас известен как треугольник Паскаля.

К VI веку н. э. индийские математики, вероятно, знали способ выразить общее правило, как частное, и выражали это примерно в таком виде: n! / (n - k)!k!. Чёткое его изложение можно найти в тексте XII века, автор которого — Бхаскар. Насколько известно, первая формулировка биноминальной теоремы и соответствующая таблица коэффициентов найдена в работе Аль-Караджи, которая цитируется Аль-Самавалем в его трудах.

Аль-Караджи описал треугольную структуру биномиальных коэффициентов, а также представил доказательство как теоремы о биноме, так и правила треугольника Паскаля, используя раннюю форму математической индукции. Персидский поэт и математик Омар Хайям, вероятно, был знаком с формулой более высокого порядка, хотя многие из его математических работ не дошли до современных учёных.

Биноминальные разложения малых степеней были известны в математических работах XIII века Ян Хуэя и Чу Ши-Цзе. Ян Хуэй ссылается на более ранний текст Цзя Сяня, написанный в XI в., однако и эти записи в настоящее время также утрачены.

В 1544 году Майкл Стифель ввёл термин «биномиальный коэффициент» и показал, как его использовать для выражения (1 + a)n с точки зрения (1 + a)n - 1 через «треугольник Паскаля». Блез Паскаль всесторонне изучил треугольник в трактате «Traité du triangle arithmétique» (1653).

 Майкл Стифель

Надо сказать, что структура чисел уже была известна европейским математикам позднего ренессанса, включая:

  • Стифеля.
  • Никколо Фонтана Тарталья.
  • Симона Стевина.

К слову, Исааку Ньютону обычно приписывают обобщённую теорему о биномах, справедливую для любого рационального показателя.

Утверждение теоремы

Согласно теореме, можно разложить любую степень x + y в сумму вида (x + y)n = (nₒ) x n y 0 + (n1) x n - 1 y 1 + (n2) x n - 2 y 2 + ··· + (n n - 1) x1y n - 1 + (n n) x1y n - 1+ (n n) x0 y n , где каждый (nk) является положительным целым числом, известным как коэффициент бинома.

Утверждение теоремы

Когда показатель степени равен нулю, соответствующее выражение степени принимается равным 1 и этот мультипликативный фактор часто исключается из формулы. Нередко можно видеть правую сторону уравнения, записанную в виде (nₒ) x n + ···. Эта формула также называется биноминальным тождеством.

Наиболее простой пример формулы бинома Ньютона — решение для квадрата из х + у, например, (x + y)2 = x2 + 2xy + y2. Биномиальные коэффициенты 1, 2, 1, фигурирующие в этом расширении, соответствуют второму ряду треугольника Паскаля. Следует обратить внимание на общепринятые нормы, где верхняя «1» треугольника считается строкой 0.

Коэффициенты более высоких степеней x + y соответствуют нижним строкам паскалевского треугольника. Из расчётов можно наблюдать несколько закономерностей. В общем случае для разложения (x + y) n:

  • степени x уменьшаются на 1 в каждом члене, начинаясь с n до достижения 0 (при x 0 , равном 1);
  • y начинаются с 0 и увеличиваются на 1 (пока не достигнут n степени);
  • число слагаемых в разложении перед объединением одинаковых слагаемых является суммой коэффициентов и равно 2n;
  • после объединения одинаковых слагаемых в разложении получится n + 1.

Теорема может быть применена к степеням любого бинома.

С точки зрения геометрии

Для положительных значений a и b теорема с n = 2 является геометрически очевидным фактом. Это значит, что квадрат стороны a + b может быть разделён: на квадрат стороны a и b, на два прямоугольника со сторонами a и b. При n = 3 теорема утверждает, что из куба со стороной a + b можно получить: два куба со сторонами a и b, соответственно, три прямоугольника a × a × b и столько же a × b × b.

Значение сторон в геометрии

В исчислении геометрическое доказательство бинома Ньютона выглядит следующим образом: (x n)′ = nx n-1. Если установить a = x, b = ∆x, интерпретируя b как бесконечно малое изменение в a, то вырисовывается следующая картина: бесконечно малое изменение объёма n-мерного гиперкуба (x + ∆x) n, где коэффициент линейного члена (в ∆x ) является nx n-1, площадь n граней, каждое из измерений (n - 1), (x + ∆x) n = x n + nx n-1 ∆x + (n2)x n-2 (∆x) 2 + ··· .

Подстановка этого уравнения в определение производной через разность и принятие пределов означает, что члены более высокого порядка, (∆x) 2 и выше, становятся незначительными, и даёт формулу (x n)′ = nx n-1. Всё это интерпретируется как «бесконечно малая скорость изменения объёма n-куба, при изменении длины его стороны, равна площади n (n - 1)».

Биномиальные коэффициенты появляются в разложении бинома Ньютона. Обычно их записывают как (n k) и интерпретируют, как количество способов выбора k элементов из n строки треугольника Паскаля. Коэффициент x n - k y k находят по формуле: (n k) = n! / k! (n-k)!, которая определяется в терминах факториальной функции n!.

Доказательств теоремы несколько. Для примера можно рассмотреть комбинаторное. Его алгоритм — один из самых простых. Коэффициент xy 2 в (x + y) 3 равен:

  • (x + y) (x + y) (x + y);
  • xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy;
  • x2 + 3x2 y + 3xy2 + y3 равняется (3 2) = 3.

Доказательства теоремы

Вычисления выглядят так, потому что есть три x и y строки, а именно: xyy, yxy, yyx. Они соответствуют трём двухэлементным подмножествам {1, 2, 3}, а конкретно: {2,3}, {1,3}, {1,2}, где каждое подмножество определяет позиции y в соответствующей строке треугольника.

Или, например, общий случай. Расширение (x + y) n дает сумму 2 n произведений вида e1 e2 ... en, где каждый ei равен x или y. Коэффициенты перестановки показывают, что каждый продукт равен x n - k y k для некоторого k между 0 и n. Для заданного k следующие значения равны по порядку:

  • количество копий x n - k y k в расширении;
  • количество n-символов x, y строк, имеющих y ровно в k позициях;
  • количество k-элементных подмножеств {1, 2, ..., n}.

Доказывают биномиальную теорему либо по определению, либо по короткому комбинаторному аргументу, если (n k) представлено как n! / k! (n-k)!.

Биномные обобщения

Исаак Ньютон

Около 1665 года Исаак Ньютон обобщил свою теорему, касающуюся бинома. Сделал он это для того, чтобы разрешить вещественные показатели, отличные от неотрицательных целых чисел. В этом обобщении конечная сумма заменяется бесконечным рядом. Чтобы сделать это, нужно придать смысл коэффициентам бинома с произвольным верхним индексом, что невозможно сделать с помощью обычной формулы с факториалами.

Однако для произвольного числа r можно вычислить (r k) = r(r - 1) ··· (r - k + 1) / k! = (r)k / k!, где (·) k является символом Похгаммера, который здесь означает падающий факториал. Это согласуется с обычными определениями. Когда r - неотрицательное целое число, биномиальные коэффициенты при k > r равны нулю, поэтому это уравнение сводится к обычной биномиальной теореме, где существует не более r + 1 ненулевых членов. Для других значений r ряд обычно имеет бесконечно много ненулевых членов.

Обобщения можно распространить на случай, когда x и y - комплексные числа. Для этой версии следует снова принять | х | > | у | и определить степени x + y и x, используя голоморфную ветвь логарифма, определённую на открытом диске радиуса | х | с центром в х. Обобщённая теорема бинома справедлива и для элементов х и у в банаховой алгебре, пока х = ух, х является обратимым, а || у / х || <1.

Биномиальную теорему можно обобщить, включив в нее степени сумм с более чем двумя членами. Мультибиномиальная теорема часто бывает полезной при работе в нескольких измерениях, чтобы иметь возможность оперировать продуктами биномиальных выражений.

Проверка в действии

Начать лучше с решения простой задачи, которую учитель покажет классу на уроке алгебры. Например, нужно расширить (2x-3) ³. Это было бы не слишком трудно сделать, воспользовавшись онлайн-калькулятором. Но нужно использовать бином, когда придётся столкнуться с более крупными расширениями, такими как двучлены, возведённые в 4, 5, 6, ... степени.

Как определить два члена из бинома

Для начала нужно определить два члена из бинома (положения x и y формулы) и степени (буква n), до которой нужно расширить бином. Например, чтобы расширить (2x-3) ³, два члена составляют 2x и -3, а значение мощности (или n) равно 3. Следует отметить, что всякий раз, когда в биноме есть знак вычитания, очень важно помнить, что минус следует использовать только в качестве отрицательного символа в сопутствующем термине.

Замечательная вещь в теореме о биноме - это то, что она позволяет найти расширенный многочлен без умножения множества биномов вместе. Довольно интересное свойство. Оказывается, что число слагаемых в искомом расширенном полиноме всегда будет на единицу больше, чем сила, которую расширяют. Это означает, что необходимо создавать многочлен с четырьмя членами, так как мощность в этом примере равна 3.

Каждый член будет иметь (2x) и (-3), а также формулу «n выбирает k», где n = 3. Нужно записать это 4 раза, по одному на каждый член, оставив значение k в «n выбирает k». На этом этапе подсчёта значения степеней не заполняются.

Далее нужно заполнить k-значения и полномочия. Здесь можно следовать формуле суммирования, увеличивая мощность для каждого члена. Но довольно просто следовать шаблонам. Значения k в «n выбирает k» начинаются с k = 0 и увеличиваются на 1 в каждом члене. Последний член должен заканчиваться на n, равный k, в этом случае n = 3 и k = 3. Затем нужно добавить полномочия на (2x) и (-3).

Включение (2x) начнётся с n-значения, в этом случае - 3, и будет уменьшаться на 1 для каждого слагаемого, пока не доберётся до нуля. Включение (-3) будет начинаться с нуля и увеличиваться на единицу каждый раз, пока не доберётся до n или 3 в этой задаче. Итак, половина дела сделана: (³ₒ)(2x)³‾⁰˭³ (-3)⁰ + (³1)(2x) 3-1=2 (-3)1 + (³2)(2x) 3-2=1 (-3)2 + (³3)(2x) 3-3=0 (-3)3.

Поскольку любое значение, возведённое в ноль, равно 1, можно упростить слагаемые с нулевыми степенями. Далее, двигаясь вперёд и применяя силы, целесообразно упростить все возможные сочетания.

Короткий путь

Формула комбинации

Последняя часть должна решить формулу комбинации. Очевидный способ сделать это — применить формулу комбинации для каждой задачи. Но стоит пойти на хитрость и ускорить вычисления, используя треугольник Паскаля, образованный путём создания треугольника с тремя начальными единицами. После этого для каждой строки нужно просто написать 1 на обоих концах и найти средние числа, добавляя два значения непосредственно над ним.

Теперь хорошая часть. В Треугольнике Паскаля спрятаны все ответы - это настоящая шпаргалка. Диаграмма ниже показывает, где находятся скрытые «n выбирает k».

Треугольник Паскаля

Для рассматриваемой задачи нужно решить: 3 выбирает 0, 3 выбирает 1, 3 выбирает 2 и 3 выбирает 3. Все эти значения содержатся в четвёртой строке. Итак, всё, что нужно сделать, это посмотреть на четвёртый ряд треугольника и сделать выводы, сопоставив ответы. Четвёртая строка имеет значения: 1, 3, 3, 1. Поэтому надо просто заменить n на выбор k. Получается следующее: (1)8x3 + (3)4x2(-3) + (3)(2x)(9) + (1)(-27).

Наконец, всё, что нужно сделать — умножить и упростить каждый термин до его простейшей формы. Стоит проверить окончательный ответ, чтобы убедиться, что полномочия каждого термина всё ещё увеличивают степень первоначального бинома.