Для успешного решения математических задач часто бывает необходимо уметь преобразовывать созданные выражения. Для этого применяют базовые знания, формулы сокращённого умножения, в том числе, квадрат суммы и квадрат разности.

456

Они помогают упрощать громоздкие записи, более рационально подходить к приведению дробей к одному знаменателю, решению уравнений и задач по геометрии, тригонометрии, математическому анализу, физике, химии, экономическим дисциплинам и многим другим наукам.

Поэтому среди многих разделов математики школьная алгебра занимает базовую приоритетную позицию, дающую основы вычислений для смежных предметов.

Формула квадрата разности

Для получения формулы применяют правило умножения многочлена на многочлен: нахождение суммы произведений каждого слагаемого одной скобки на каждое слагаемое второй скобки, учитывая, что квадрат отрицательного числа равен квадрату положительного:

100

Если запомнить правило, то необходимость постоянно прописывать эту цепочку равенств исчезает.

Квадрат разности двух выражений равен сумме квадратов каждого из выражений без их удвоенного произведения:

101

Примеры задач с решением

Задача №1

Требуется возвести в квадрат разность (8x - 3y).

Решение.

При использовании формулы получается:

102

Ответ: 64x2 - 48xy + 9y2.

Задача №2

Упростить выражение:

b2 + 49 - (b - 7)2

Решение.

103

Ответ: 14b.

Формула квадрата суммы и неполного квадрата суммы

Также легко, как и в предыдущем случае, выводится эта формула:

104

Квадрат суммы двух выражений равен сумме квадратов каждого из них плюс их удвоенное произведение:

105

Многие школьники, начинающие знакомиться с этим материалом, часто теряют двойку во втором слагаемом правой части, получая

106

Однако, в этом случае, возникает неполный квадрат суммы (или разности), который на множестве действительных чисел не раскладывается на множители.

Обе формулы применяются не только для раскрытия скобок, но и для разложения на множители, что в свою очередь упрощает приведение к одному знаменателю, сокращение дробей, решение уравнений высоких степеней.

Примеры задач с решением

Задача №3

Преобразовать трёхчлен в квадрат двучлена:

28xy + 49x2 + 4y2

Решение.

Поскольку квадраты находятся на втором и третьем местах, поменяем слагаемые между собой и подготовим выражение для применения формулы:

107

Ответ: (7x + 2y)2

Возведение во вторую степень суммы трёх и более слагаемых выполняется аналогично: необходимо возвести в квадрат каждый элемент, записать все возможные удвоенные произведения и сложить полученные результаты.

Правила возведения в степени более высоких порядков возникают, когда выполняется умножение одинаковых многочленов несколько раз.

Возможность выполнять возведение в квадрат больших чисел, не используя калькулятор, является одним из преимуществ сокращённого умножения.

Задача №4

Выполнить раскрытие скобок и упростить:

(x2 + 3x - 4y)2 - x4 - 9x2 - 16y2

Решение.

108

Ответ: 6x3 - 8x2 - 24xy.

Задача №5

Вычислить:

1032 + 1972

Решение.

Для каждого слагаемого применяется одно из правил возведения в квадрат, затем производится суммирование результатов:

109

Решая квадратные уравнения, вместо поиска дискриминанта выделяют полный (точный) квадрат среди слагаемых, расположенных в левой части. В правую сторону собираются оставшиеся элементы.

Задача №6

Решить уравнение:

x2 - 4x - 5 = 0

Решение.

Первые два слагаемых левой части полностью удовлетворяют формуле квадрата суммы. Соотнеся их с соответствующими элементами правила, определяют, прибавляют и вычитают третье, затем сворачивают в точный квадрат, остальные члены алгебраической суммы переносят в правую сторону:

110

Решениями исходного уравнения являются корни уравнений

111

Ответ: x = 5 или x = -1.

Разность квадратов и квадрат разности

Разность квадратов

Ещё одной формулой сокращённого умножения является разность квадратов. Она получается при умножении суммы двух выражений на их разность.

112

Читается справа налево.

Разность квадратов двух выражений равна произведению разности этих выражений на их сумму:

114

Применение последней записи справа налево есть раскрытие скобок более удобным способом, чем простое умножение многочленов.

Разложение на множители позволяет судить о наличии целых или натуральных корней квадратного уравнения.

Пример задачи с решением

Задача №7

Сократить дробь:

115

Решение.

В числителе записан квадрат разности, а в знаменателе – разность квадратов двух выражений. Применяя соответствующие формулы, получается искомый результат:

116

Ответ:

117
.

В большинстве случаев разницы, как сворачивать квадрат двучлена, не существует. Однако в данной ситуации, благодаря выражению в знаменателе, на первое место лучше поставить

, чтобы избежать игры с минусом при сокращении.

Онлайн калькуляторы помогают выполнять преобразования. Однако, поскольку формулы сокращённого умножения являются базовым материалом школьного курса, то лучше не просто получить результат, но и понять, каким образом к нему пришли.