Нуклеиновые кислоты

Виды нуклеотидов

В природе существует два вида нуклеиновых кислот — рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Основанием каждой из них является азотистое основание, остаток фосфорной кислоты и пятиуглеродный сахар.

Состав ДНК

В состав ДНК входит четыре разновидности нуклеотидов, отличие которых заключается в азотистом соединении:

  • А — аденин;
  • Т — тимин;
  • Ц — цитозин;
  • Г — гуанин.

Что касается РНК, то они тоже имеют несколько видов в зависимости от азотистого основания:

  • У — урацилом;
  • Ц — цитозин;
  • Г — гуанин;
  • А — аденин.

Поговорим и о физических свойствах нуклеотидов. Они легко растворяются в воде, но при этом практически нерастворимы в растворителях, имеющих органическое происхождение. Очень восприимчивы к температурным перепадам, а также критическим показателям значения уровня рН.

Молекулы ДНК обладают весомой молекулярной массой, благодаря чему могут фрагментироваться в результате механического воздействия.

Нуклеиновые кислоты и их строение

Нуклеиновые кислоты и их строение

Прежде всего необходимо узнать, что нуклеотидами являются мономеры нуклеиновых кислот. Они соединены между собой линейно, формируя длинные молекулярные соединения нуклеиновых кислот. Самыми длинными полимерами являются цепочки молекул ДНК. Как правило, длина молекул РНК значительно меньше, но при этом может отличаться (зависит от типа).

При формировании полинуклеотидного соединения остатки фосфорной кислоты взаимодействуют с трехатомным углеродом пентозы. Аналогичная связь формируется между фосфорной кислотой и пятиатомным углеродом сахара непосредственно в нуклеиновой кислоте.

Исходя из этого, индивидуальная характеристика нуклеиновой кислоты — это последовательность пентозы с мостиками фосфорных кислот. Азотистые основания отделяются по сторонам.

Стоит добавить, что молекулы ДНК не только длиннее в сравнении с РНК, но и состоят из нескольких цепей, которые соединены между собой химически водородными связями. Такие структурные связи формируются по принципу комплементарности: гуанин комплементарен цитозину, а аденин — тимину.

Нуклеотиды содержат в себе такие вещества:

Нуклеотиды Остаток фосфорной кислоты Соединения азота Пятиуглеродный сахар
РНК +
  • У;
  • Ц;
  • Г;
  • А.
Рибоза
ДНК +
  • А;
  • Г;
  • Ц;
  • Т.
Дезоксирибоза

Образоваться такие связи могут и в структурах РНК, но водородные связи формируются между нукленовыми кислотами одной цепи.

Функции нуклеотидов

Местонахождение в клетках аминокислот, белка и нуклеотидов поддерживает их жизнедеятельность, а также сохранение, передачу и верную реализацию генетической наследственности. Стоит в отдельности рассмотреть функции ДНК, РНК и их разновидностей в жизни живых организмов.

Значение ДНК

В клетках ДНК вся информация в основном сосредоточена в ядре клетки. Бактериальная среда, как правило, в формуле занимает одну кольцевую молекулу, находится в неправильной формы образовании в цитоплазме, именуемым нуклеотидом. Гены, входящие в состав наследственной информации генома, являются единицей передачи генетической наследственности. Признак частицы — открытая рама считывания.

Клетка ДНК

  1. Самая важная биологическая функция вида — генетическая, клетка является носителем генетической информации (благодаря этой особенности, каждый вид на планете обладает своими индивидуальными особенностями).
  2. Наследственную информацию ДНК способно передавать в ряду целых поколений не без дополнительного участия и РНК.
  3. Осуществляет процессы регуляции биосинтеза белка.

Хранение и передача информации (генетической предрасположенности) осуществляется за счет биосинтеза белка посредством и-РНК, т-РНК.

Свойства РНК

В природе различают три разновидности РНК, каждая из которых предназначена для выполнения особой роли в осуществлении синтеза белка.

Транспортная РНК

Рибосомная РНК

  1. Транспортная предназначена для транспортировки активированных аминокислот по организму к рибосомам. Это необходимо для осуществления синтеза полипептидных молекул. Исследования показали, что одна транспортная молекула способна связаться лишь с одной из 20 аминокислот. Они служат в качестве транспортировщиков специфических аминокислот и углеводов. Длина транспортной цепи значительно короче матричной, в состав входит приблизительно 80 нуклеотидов, визуально имеет вид клеверного листа.
  2. Матричная занимается копированием наследственного кода из ядра в цитоплазму. За счет этого процесса осуществляется синтез разнообразных белков. Схема строения представляет собой одноцепочную молекулу, она является неотъемлемой составляющей цитоплазмы. В составе молекулы содержится до нескольких тысяч нуклеотидов, они занимаются транспортировкой наследственной информации через мембрану ядра к очагу синтеза на рибосоме. Копирование информации осуществляется посредством транскрипции.
  3. Рибосомная задействует около 73 белков для формирования рибосом. Они собой представляют клеточные органеллы, на которых осуществляется сбор полипептидных молекул. Основные задачи рибосомной молекулы — это формирование центра рибосомы (активного); неотъемлемый структурный элемент рибосом, обеспечивающий их правильное функционирование; первоначальное взаимодействие рибосомы с кодоном-инициатором для выявления рамки считывания; обеспечение взаимодействия рибосомных молекул с транспортными.

История исследований

На протяжении десятилетий ведущие ученые мира занимались исследованием нуклеотидов. Рассмотрим более подробно историю изучения нуклеотидов.

«инозиновая кислота».

Правила Чаргаффа.

  • Из экстракта мышц быка в 1847 году было изъято вещество, которое в скором было названо «инозиновая кислота». Это вещество и стало первым изученным в мире нуклеотидом. В течение нескольких последующих десятилетий ученые занимались изучением его химического строения.
  • Немного позднее швейцарским выдающимся химиком было открыто новое вещество, в составе которого содержался фосфор. Вещество не разрушалось под действием ферментов протеолитов. Также ему были свойственны выраженные кислотные свойства. Вещество было названо «нуклеин».
  • Рихард Альтман в 1889 году ввел в науку термин «нукленовая кислота», а также изобрел способ извлечения нуклеотидов, в составе которого отсутствуют белковые примеси.
  • В 40-х годах XX века научная группа под руководством Тодда Александера проводила масштабные синтетические лабораторные исследования в области нуклеозидов и нуклеотидов. Результат их опытов — изучение всех деталей стереохимии и химического строения нуклеотидов. Благодаря этим работам, выдающийся ученый в 1958 года был награжден Нобелевской премией в области химии.
  • Чаргаффом в 1951 году была выявлена закономерность содержания в кислотах нуклеотидов разных видов. Впоследствии результаты исследований получили название Правила Чаргаффа.
  • Несколькими годами позднее была подтверждена вторичная структура ДНК. Двойную спираль открыли биологи и химики Крик и Уотсон.

Нуклеотиды — это неотъемлемая составляющая каждой клетки живого организма, обеспечивающая ее жизнедеятельность, а также хранение, транспортировку и реализацию наследственной (генетической) наследственности. Ученые посвятили годы изучению видов и строения молекул, что открывает перед человеком большие возможности.

>>