Корень уравнения

Общие сведения

Что такое корень уравнения

Уравнение — это равенство вида F (x1, x2,., xn) = G (x1, x2,., xn), в котором есть переменные. Определение можно сформулировать следующим образом: уравнением называется равенство, в котором присутствуют неизвестные величины. Решить его — значит найти корни (корень) или доказать, что их нет.

Корень — значение, при подстановке которого равенство принимает истинное значение. Например, корнем уравнения (2х = 4) является 2.

Решением уравнения называется задача по нахождению всех его корней или доказательство их отсутствия. В некоторых случаях условием задачи могут быть наложены ограничения (только целые числа, дробные, комплексные и так далее).

Равносильные функции с неизвестными

В математике существует понятие равносильности или эквивалентности уравнений. Оно означает, что корни заданных равенств совпадают. Кроме того, они считаются эквивалентными, когда не имеют корней. Эквивалентность имеет:

Равносильные функции с неизвестными

  1. Симметричность: если первое уравнение равносильно второму, то, следовательно, и второе равносильно первому.
  2. Транзитивность: если первое равенство с неизвестными эквивалентно второму, а второе — третьему, то, следовательно, и третье эквивалентно первому.
  3. Третье свойство задается теоремой: если существуют функции F (x) и G (x), которые задаются над областью целостности, то уравнение F (x) * G (x) = 0 эквивалентно двум равенствам вида: F (x) = 0 и G (x) = 0.

Последний прием используется при решении квадратных, кубических и биквадратных уравнений некоторых типов. Метод позволяет упростить поиск неизвестных величин. Например, x 2 — 2x = 0 является квадратным уравнением с параметром С = 0.

Можно найти его дискриминант и вычислить корни. Но существует более простой способ — использование третьего свойства эквивалентности. Следует просто вынести общий множитель за скобки: х * (х-2) = 0. Уравнение «распадается» на два простых: х = 0 и х — 2 = 0. Решаются они очень просто: х1 = 0 и х2 = 2.

Информация о свойствах

Выражения, входящие в состав уравнения, не должны изменять корни, а также приводить к обнаружению посторонних решений. Допустимые преобразования:

  • раскрытие скобок;
  • приведение подобных слагаемых;
  • перенос любого члена уравнения в другую часть с заменой знака на противоположный;
  • к двум частям можно прибавить или вычесть одно выражение, также допускается деление и умножение частей на одинаковые выражения, неравные 0.

Информация о свойствах

При выполнении некоторых операций, приводящих к потере переменных значений, могут возникнуть посторонние корни. В этом случае придется проверять все значения, подставляя их в исходное выражение. Рекомендуется избегать операций, которые приводят к сокращению неизвестных. Это приводит к неверным решениям и образованию дополнительных корней.

Классификация уравнений

Для решения каждого уравнения есть свои правила и алгоритмы. Различают следующие виды уравнений: алгебраические, с параметрами, трансцендентные, функциональные, дифференциальные и другие.

Классификация уравнений

Некоторые виды позволяют записывать значение корня в виде функции или функции с параметром. Для решения применяются специальные аналитические функции, которые могут предоставить сведения о вычислении корней, а также предварительно определить их количество и зависимость от значения параметра. Однако аналитические решения можно применять только для алгебраического типа (не выше 4 степени).

Для трансцендентных уравнений количество аналитических решений ограничено, поскольку не все тригонометрические функции имеют значения, равные нулю. Если невозможно найти аналитическое решение, то применяются вычислительные методы. Они позволяют сузить интервал, в котором находится корень. Следовательно, такое решение не будет точным.

Алгебраический тип

Уравнение вида P (x1, x2,., xn) = 0, в котором многочлен представлен неизвестными аргументами, называется алгебраическим. Оно может содержать одно или несколько неизвестных, иметь степень.

Алгебраические уравнения могут быть нескольких типов: линейными, квадратными, кубическими, биквадратными (4 степень). Кроме того, линейные могут объединяться в системы. Решить систему уравнений — значит найти общие корни всех выражений, которые в нее входят.

Линейные и квадратные

Линейным называется уравнение, степень которого соответствует единице. Его можно записать в двух формах — общей и канонической. В первом случае оно имеет следующий вид: a1 * x1 + a2 * x2 + an * xn + b = 0. В последнем случае нужно перенести число b в правую часть: a1 * x1 + a2 * x2 + an * xn = b. Пример: 3х — 2 = 25.

Линейные и квадратные уравнения

Более сложным типом считается квадратное уравнение, то есть выражение типа А * х 2 + В * x + С = 0 (А не равно 0). Они бывают полными (А, В, С не равны 0) и неполными (какой-нибудь коэффициент равен 0, кроме А). Его можно решить автоматизированным и ручным методами.

Можно воспользоваться специальным программным обеспечением или интернет-ресурсом, который ищет корни квадратного уравнения. Необходимо вписать в специальные поля значения А, В и С. Программа вычислит все за секунду и выдаст результат. Во втором случае нужно применить формулу. Корни квадратного уравнения вычисляются при нахождении дискриминанта и подстановке значений А и В в выражения. Чтобы найти их, следует действовать по алгоритму:

  1. Вычислить дискриминант: D = b 2 — 4 * А * С.
  2. При D > 0 имеется два корня: х1 = [(-B) — sqrt (D)] / (2 * A) и х2 = [(-B) + sqrt (D)] / (2 * A).
  3. Если D = 0, то корень единственный: х = (-B) / (2 * A).
  4. Корней не существует при D < 0.

Еще один способ — применение теоремы Виета, которая правильна только в случае А = 1. Корни можно узнать по таким формулам: х1 + х2 = - В и х1 * х2 = С. Их также можно вычислить, построив график функции. Точки пересечения с осями и будут корнями.

Кубические и биквадратные

Многочлен с неизвестными вида A * х 3 + B * x 2 + C * x + D = 0 называется кубическим уравнением. При этом А не может быть равно 0. Для решения применяется кубическая парабола.

Кубические и биквадратные уравнения

Равенство можно разделить на А и выполнить замену такого вида: x = y — (b / (3 * A)). Исходное выражение примет такой вид: y 3 + p * y + q = 0. Коэффициенты p и q вычисляются по следующим формулам: q = [2 * B 3 — 9 * A * B * C + 27 * (A 2) * D] / (27 * A 3) и p = [(3 * A * C — B 2) / (3 * A 2)].

При решении биквадратных многочленов с неизвестными необходимо рассматривать каждый случай индивидуально. Все они решаются аналитическим способом с помощью замены переменной. Главной задачей является понижение степени.

С параметрами и трансцендентные

В дисциплинах с физико-математическим уклоном можно встретить уравнения с параметрами, от которых зависит их вид. Они могут быть линейными и нелинейными. Для их решения надо найти все системы значений параметров, при которых имеются корни.

С параметрами и трансцендентные уравнения

Пример — a * x + 1 = 4. Параметр «а» может быть дробью, действительным или натуральным числом, а также состоять из суммы, произведения или разности некоторых переменных. Допустимые значения оговариваются условием задачи. Их называют ограничениями.

Трансцендентные уравнения содержат показательные, логарифмические, тригонометрические и обратные тригонометрические функции. Они не являются алгебраическими. Пример — cos (x) = x и lg (x) = x — 5. Их корни находятся по различным алгоритмам, которые зависят от общего вида. Допускается при решении использование метода замены переменных для упрощения вида.

Функциональные и дифференциальные

Функциональные и дифференциальные уравнения

Уравнения, которые выражают связь между значениями в нескольких точках, называются функциональными. Этот термин применяется для всех видов, которые невозможно свести к алгебраическому типу. Корнем является функция. Например, корнем выражения F (s) = 2^(s) * ПИ^(s-1) * sin (ПИ * s / 2) * Г (1-s) * f (1-s) является дзета-функция Римана.

Дифференциальное уравнение содержит какую-либо дифференциальную функцию с неизвестным или неизвестными. Все дифуравнения делятся на два типа: обыкновенные и в частных производных. В первый тип входят функции от одного аргумента, во вторую — функции, зависящие от многих аргументов. Для нахождения корней следует найти функцию, удовлетворяющую условию и имеющую на интервале производные.

Примеры решения

На ЕГЭ могут быть различные задания по математике. Среди них могут быть линейные и квадратные уравнения. Например, дано выражение вида: 3 (х-9) + 2х (х-3)= 2 (х-2)(х+2). Нужно найти значение переменной. Алгоритм следующий:

  1. Раскрыть скобки: 3х — 27 + 2х 2 — 6x = 2x 2 — 8.
  2. Привести подобные слагаемые: -3х = 18.
  3. Найти корень: х = - 6.

Нет смысла находить точки пересечения двух парабол (x 2 — 3x + 2 = 0 и y 2 — 5y + 6 = 0) с осями координат. Для получения быстрого результата достаточно воспользоваться теоремой Виета. Точки пересечения вычисляются следующим образом: x1 = 1, x2 = 2, y1 = 2 и y2 = 3.

Как решать уравнения

Чтобы найти точки пересечения параболы (3x 2 — 10x + 5 = 0) с осями декартовой системы координат, следует решить квадратное уравнение:

  1. Найти дискриминант: D = (-b)^2 — 4AC = 100 — 4 * 3 * 5 = 100 — 60 = 40 > 0.
  2. Первый корень: x1 = [-B — sqrt (D)] / (2 * A) = [10 — 2 * sqrt (10)] / (2 * 3) = (5 — sqrt (10)) / 3.
  3. Второй: x2 = (5 + sqrt (10)) / 3.

Парабола пересекает ось ОХ в точках x1 = (5 — sqrt (10)) / 3 и x2 = (5 + sqrt (10)) / 3. Выражения можно не вычислять, поскольку получатся приближенные значения.

Таким образом, для нахождения корней уравнения необходимо сначала его идентифицировать, привести к упрощенному виду, понизить степень (при необходимости), а затем применить какой-либо из алгоритмов.