Основные операции в математике

Базовыми формами вычисления являются:
  • Сложение +
  • Умножение х или ∗
  • Вычитание -
  • Деление ÷ или /
К ним также можно отнести возведение в степень, однако с ним действуют те же законы, что и при умножении. Итак, последовательность расчетов регулируется следующими правилами. По умолчанию, при отсутствии дополнительных элементов, они выполняются в порядке написания.

15 - 3 + 7 = 19

При наличии скобок сначала выполняется действие, в них заключенное.

15 - (3 + 7) = 5

При появлении знаков или первыми выполняются они, лишь затем сложение или вычитание.

2 + 2 х 2 = 2 + 4 = 6

2 + 2 ÷ 2 = 2 + 1 = 3

Скобки могут частично ослабить эти правила, так как действие в них заключенное всегда выполняется в первую очередь.

(2 + 2) х 2 = 4 х 2 = 8

(2 + 2) ÷ 2 = 4 ÷ 2 = 2

Если в скобки заключено сложное выражение, внутри них работают стандартные правила.

(4 + 7 - 1) + 5 = (11 - 1) + 5 = 15

(5 + 3 х 2) - 4 = (5 + 6) - 4 = 11 - 4 = 7

При появлении двух и более знаков или нужно учитывать их очередность.

5 х 2 - 8 ÷ 4 = 10 - 2 = 8

Решение  примеров с множественными скобками

Вариант 1:

5 + 8 ÷ 2 + 3 х (15 - 6 х 2 + 1) + 3 х (6 - 4) = ?

Распишем все расчеты поэтапно:
  1. 6 х 2 = 12
  2. 15 - 12 + 1 = 4
  3. 6 - 4 = 2
  4. 8 ÷ 2=4
Получаем сокращенную версию:

5 + 4 + 3 х 4 + 3 х 2 = ?

Снова расписываем:
  1. 3 х 4 = 12
  2. 3 х 2 = 6
Еще сократили: 5 + 4 + 12 + 6 = 27 Вариант 2: 3 + 2 х [10 - 3 х (6 ÷ 2)] + 1 = ? Сокращаем:
  1. 6 ÷ 2 = 3
  2. 10 - 3 х 3 = 10 - 9 = 1
Получили: 3 + 2 х 1 + 1 = 3 + 2 + 1 = 6 Вариант 3: {50 - [11 - (5 + 2)} х 4 = ? Сокращаем:
  1. 5 + 2 = 7
  2. 11 - 7 = 4
  3. 50 - 4 = 46
  4. 46 х 4 = 184
Ответ: 184

Законы сложения и умножения Также описывают общие принципы проведения вычислений.

Переместительный:

a + b = a + b

Сочетательный:

(a + b) + c = a + (b + c)

a х (b х c) = (a х b) х c

Распределительный:

a х (b + c)=a х b + a х c

(a + b) х c= a х c + b х c

Законы нуля:

a + 0 = a

a х 0=0

Правило единицы:

a х 1 = a

Знание этих законов поможет проводить необходимые вычисления быстрее.
Важно! В случае замены + и х  на - и ÷ соответственно эти правила перестают действовать.
Несмотря на легкость понимания, очередность выполнения операций жизненно важна, так как все сложные формулы (логарифмы, интегралы и так далее) по сути представляют собой сокращенную форму написания длинной цепи простых вычислений. Чтобы закрепить материал статьи, рекомендуем посмотреть видео ниже. Рекомендуем посмотреть видео о порядке дейсивий в математике