Общая характеристика

обработка титановых сплавов

Титановые сплавы обладают повышенной реакционной способностью с инструментальными сталями, в частности, с быстрорежущими. Для начала реакции достаточны температуры, превышающие 500 °C. В условиях повышенных температур происходит диффузия атомов титана в карбидный инструментальный материал и их последующая химическая реакция с углеродом, присутствующим в инструменте. В результате образуется промежуточного слоя из карбида титана (TiC), который прочно связывается с обеими поверхностями. Формирование насыщенной зоны схватывания сводит к минимуму механизм диффузионного износа.

Основными характеристиками, которые делают титан востребованным во многих сферах хозяйственной деятельности, являются:

  1. Превосходное соотношение прочности и веса, обеспечивающее экономию конструкций, которые используются в аэрокосмической и нефтехимической промышленности.
  2. Коррозионная стойкость, особенно востребованная в аэрокосмической, химической, нефтехимической и архитектурной отраслях.
  3. Биологическая совместимость, представляющая интерес для медицинской промышленности.

Композиции на основе титана имеют привлекательный внешний вид. Это свойство используется в монументально-прикладном искусстве.

Классификация сплавов на основе титана

Общеизвестна классификация по типам фаз: α, α + β и β. Например, в бинарных структурах системы Ti-M высокотемпературная β-фаза сохраняется метастабильной даже при комнатной температуре, когда состав сплава превышает определенное критическое значение. Критическое значение изменяется с изменением процентного содержания молибдена.

Каждый из типов рассматриваемых материалов существует только в определённой области. Например, сплав с алюминием и ванадием существует в области типа α + β. Сплав титана с марганцем - в области β.

Механическая обработка титановых сплавов производится с учётом области их стабильного существования. Она же устанавливает и режимы термической обработки. Например, титано-марганцевые сплавы подвергаются термообработке в температурном диапазоне (α + β). При этом не только улучшаются его механические свойства, но и изменяется область стабильного существования материала. Поэтому, если тип не определён, то его можно предсказать, рассчитав процентное содержание компонентов.

Чтобы понять поведение легирования соответствующих элементов, устанавливают основной вектор легирования, который точнее всего определять для бинарных композиций. Этот вектор легирования начинается в положении чистого титана и заканчивается, когда наличие легирующего металла превышает 10 %. Например, вектор легирования сплава Ti-Al попадает в поле α-фазы по мере увеличения содержания Al, что указывает на то, что Al является α-стабилизирующим веществом. С другой стороны, например, V, Nb и Ta являются β-стабилизирующими элементами, поскольку их векторы направлены в сторону поля β-фазы. Эти результаты согласуются с хорошо известным поведением компонентов, используемых при легировании титана.

Практическая классификация в отечественной и зарубежной практике ведётся с учётом сфер их оптимального применения.

Высокопрочные конструкционные

Высокая прочность и низкая плотность титана (примерно на 40% ниже, чем у стали) предоставляют множество возможностей для снижения веса всевозможных летательных аппаратов.. Лучшим примером этого является использование титановых сплавов в конструкции шасси самолетов Boeing 777 и 787 и Airbus A380.

Большинство деталей шасси детали изготовлены из сплава титана с железом, ванадием и алюминием. Минимальный предел прочности на разрыв составляет почти 1200 МПа, что ненамного меньше, чем аналогичная характеристика для высокопрочных легированных сталей. Подобная замена приводит к снижению веса самолёта более чем на 580 кг. Аналогичный пример можно привести и по сплаву титана с алюминием, ванадием, молибденом и хромом, который применён в конструкции пассажирского лайнера Boeing 787. Материал имеет высокие прочностные показатели, способствовал повышению грузоподъемности данного самолёта.

свойства титановых сплавов

Использование высокопрочных конструкционных сплавов на основе титана вследствие их повышенной коррозионной стойкости значительно снижает затраты на обслуживание техники.

Свойства титановых сплавов делают их пригодными также для изготовления деталей, совершающих возвратно-поступательное движение, например, шатунов для автомобильной промышленности. Правда, стоимость их пока высока, поэтому более динамично развивается применение данных материалов в гоночных автомобилях высокого класса, где стоимость не так уж и важна.

Очень важным считается применение таких сплавов в конструкциях, где важным ограничение выступает пространство. Лучшим примером этого является балка шасси, используемая на самолетах Boeing моделей 737, 747 и 757. Этот компонент, проходящий между крылом и фюзеляжем, поддерживает шасси. В других самолетах Boeing для этого применения используется алюминиевые композиции, но для пассажирских крупнофюзеляжных лайнеров нагрузка выше, и алюминиевая конструкция не помещается в оболочку крыла.

Жаропрочные

Титановые сплавы хорошо зарекомендовали себя в качестве теплопередающих материалов при производстве кожухотрубных, пластинчатых/каркасных и других типов теплообменников для технологических процессов нагрева или охлаждение жидкости, особенно в охладителях морской воды.

Эффективность функционирования теплообменника можно оптимизировать благодаря следующим полезным свойствам данных материалов:

  • исключительной устойчивости к коррозии и эрозии жидкости;
  • наличию чрезвычайно тонкой оксидной поверхностной плёнки;
  • прочной поверхности, которая имеет низкую шероховатость;
  • хорошим условиям для конденсации влаги;
  • достаточно хорошей теплопроводности.

Для чистого титана последний показатель ниже, чем для меди или алюминия, но в составе легированных композиций этот недостаток снимается, и становится на 10…20% выше, чем у обычных марок нержавеющей стали. Благодаря хорошей прочности и способности противостоять коррозии и эрозии от текущих турбулентных жидкостей, толщина стенок теплообменных аппаратов может быть снижена. Этим минимизируется теплопередача сопротивлением (и, следовательно, стоимость теплообменников). Состояние поверхностей способствует капельной конденсации водяных паров, тем самым повышая скорость конденсации в охладителе/​конденсаторах по сравнению с другими металлами.

Возможность проектировать и работать с высокой скоростью потока или охлаждающей воды и/или турбулентностью дополнительно повышает общую эффективность теплопередачи. Все эти характеристики позволяют снизить габаритные размеры теплообменников и общие затраты на начальный срок службы.

Химические

гост титановые сплавы

Около 45% общего веса всех используемых металлов составляют материалы, дополнительно легированные алюминием и ванадием. Менее часто используют сплавы групп Ti-4A1-3Mo-1V, Ti-7A1-4Mo и Ti-8Mn. Другие химические составы не находят значительного промышленного применения. Ti-6Al-4V уникален тем, что в нем сочетаются достаточно высокие механические свойства с технологичностью производства. Поэтому выплавка и последующая формовка возможна на всех типах специализированных прокатных станов. Это позволяет превращать прокатные профили в сложные изделия, которые обеспечивают надежность и экономичное использование. Считается, что Ti-6Al-4V будет оставаться наиболее часто используемым титановым сплавом в течение многих лет и в будущем.

Маркировка титановых сплавов

ГОСТ на титановые сплавы (ГОСТ 19807-91) устанавливает следующие принципы маркировки:

  • Первой буквой обозначения может быть В или О. В принята для материалов, разработанных ВИАМ – институтом авиационных материалов, который является разработчиком большинства марок титановых сплавов. О соответствует опытным материалам, выплавка которых производилась на металлургическом предприятии в Верхней Салде (Урал).
  • Второй буквой маркировки является Т (титановый).
  • Первая цифра в маркировке устанавливает либо суммарное процентное содержание необходимых примесей (для сплавов, начинающихся на О), либо количество титана, содержащегося в материале (для сплавов В).
  • Вторая цифра маркировки означает суммарный процент легирующих элементов.
Материалы зарубежного производства маркируются так. Вначале указывается группа (Grade), к которой принадлежит сплав, таких групп 9. Далее приводится символ химического элемента и – без пробела – цифра о процентном наличии компонента.

Процесс производства

Основной процесс производства известный как процесс Кролла, заключается в обработке основной руды (рутила) газообразным хлором, в результате чего получают тетрахлорид титана. Затем его очищают и восстанавливают реакцией с магнием или натрием. Далее полуфабрикат подвергается процессу легирования и плавления.

Этот процесс является дорогостоящим, поэтому со временем была разработана технология изготовления данных материалов из металлического порошка. Используются алюминий и порошки диоксида титана вместе с другими материалами Стоимость такого метода намного меньше.

Области применения

титан и его сплавы

Химическая промышленность является крупнейшим потребителем титана из-за его превосходной коррозионной стойкости, особенно в присутствии окисляющих веществ. Следующим по величине пользователем является аэрокосмическая промышленность, в первую очередь из-за возможностей, проявляющихся при повышенных и криогенных температурах. Кроме того, достигается также экономия веса. В связи с более широким использованием композитов, армированных полимерным графитовым волокном, для сплавов титана, используемых в аэрокосмической промышленности, важным фактором является также низкий коэффициент теплового расширения.

Нормализованная плотность обеспечивает данным материалам высокие баллистические свойства боеприпасов.

Сплавы Ti широко используются в медицине: для операций по восстановлению кости, включая полную замену бедра, тотальную артропластику коленного сустава, динамическую компрессионную пластику. Материалы обладают также высокой коррозионной стойкостью, относительно более низким модулем упругости и биосовместимостью, что минимизирует защиту от напряжений.

Особенности термообработки

Её целями являются:

  • снятие остаточных напряжений, возникающих во время изготовления (отжиг);
  • достижение оптимального сочетания пластичности, обрабатываемости и стабильности размеров, а также структурной стабильности (отжиг);
  • старение - для увеличения прочности.

Для оптимизации свойств и получения других технологических преимуществ - вязкость разрушения, усталостной прочности, сопротивление ползучести при высоких температурах, устойчивости от коррозии - используются комбинации из вышеприведенных процессов.